These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 7925430)
21. Small angle X-ray studies reveal that Aspergillus niger glucoamylase has a defined extended conformation and can form dimers in solution. Jørgensen AD; Nøhr J; Kastrup JS; Gajhede M; Sigurskjold BW; Sauer J; Svergun DI; Svensson B; Vestergaard B J Biol Chem; 2008 May; 283(21):14772-80. PubMed ID: 18378674 [TBL] [Abstract][Full Text] [Related]
22. Structure of the catalytic domain of glucoamylase from Aspergillus niger. Lee J; Paetzel M Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Feb; 67(Pt 2):188-92. PubMed ID: 21301084 [TBL] [Abstract][Full Text] [Related]
23. Production and purification of a granular-starch-binding domain of glucoamylase 1 from Aspergillus niger. Belshaw NJ; Williamson G FEBS Lett; 1990 Sep; 269(2):350-3. PubMed ID: 2119316 [TBL] [Abstract][Full Text] [Related]
24. Differential scanning calorimetric studies on the domain structure of Aspergillus glucoamylase. Tanaka A; Fukada H; Takahashi K J Biochem; 1995 May; 117(5):1024-8. PubMed ID: 8586614 [TBL] [Abstract][Full Text] [Related]
25. Thermodynamic effects of disulfide bond on thermal unfolding of the starch-binding domain of Aspergillus niger glucoamylase. Sugimoto H; Nakaura M; Kosuge Y; Imai K; Miyake H; Karita S; Tanaka A Biosci Biotechnol Biochem; 2007 Jun; 71(6):1535-41. PubMed ID: 17587686 [TBL] [Abstract][Full Text] [Related]
26. Thermodynamics of inhibitor binding to mutant forms of glucoamylase from Aspergillus niger determined by isothermal titration calorimetry. Berland CR; Sigurskjold BW; Stoffer B; Frandsen TP; Svensson B Biochemistry; 1995 Aug; 34(32):10153-61. PubMed ID: 7640269 [TBL] [Abstract][Full Text] [Related]
27. O-glycosylation in Aspergillus glucoamylase. Conformation and role in binding. Williamson G; Belshaw NJ; Williamson MP Biochem J; 1992 Mar; 282 ( Pt 2)(Pt 2):423-8. PubMed ID: 1546955 [TBL] [Abstract][Full Text] [Related]
28. Specificity of the binding domain of glucoamylase 1. Belshaw NJ; Williamson G Eur J Biochem; 1993 Feb; 211(3):717-24. PubMed ID: 7679638 [TBL] [Abstract][Full Text] [Related]
29. Crystal structure of the starch-binding domain of glucoamylase from Aspergillus niger. Suyama Y; Muraki N; Kusunoki M; Miyake H Acta Crystallogr F Struct Biol Commun; 2017 Oct; 73(Pt 10):550-554. PubMed ID: 28994402 [TBL] [Abstract][Full Text] [Related]
30. Residual structures in the unfolded state of starch-binding domain of glucoamylase revealed by near-UV circular dichroism and protein engineering techniques. Ota C; Ikeguchi M; Tanaka A; Hamada D Biochim Biophys Acta; 2016 Oct; 1864(10):1464-72. PubMed ID: 27164491 [TBL] [Abstract][Full Text] [Related]
31. O-glycosylation and stability. Unfolding of glucoamylase induced by heat and guanidine hydrochloride. Williamson G; Belshaw NJ; Noel TR; Ring SG; Williamson MP Eur J Biochem; 1992 Jul; 207(2):661-70. PubMed ID: 1633817 [TBL] [Abstract][Full Text] [Related]
32. Reaction mechanisms of Trp120-->Phe and wild-type glucoamylases from Aspergillus niger. Interactions with maltooligodextrins and acarbose. Olsen K; Christensen U; Sierks MR; Svensson B Biochemistry; 1993 Sep; 32(37):9686-93. PubMed ID: 8373772 [TBL] [Abstract][Full Text] [Related]
33. Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Liu YN; Lai YT; Chou WI; Chang MD; Lyu PC Biochem J; 2007 Apr; 403(1):21-30. PubMed ID: 17117925 [TBL] [Abstract][Full Text] [Related]
34. Stability and function of interdomain linker variants of glucoamylase 1 from Aspergillus niger. Sauer J; Christensen T; Frandsen TP; Mirgorodskaya E; McGuire KA; Driguez H; Roepstorff P; Sigurskjold BW; Svensson B Biochemistry; 2001 Aug; 40(31):9336-46. PubMed ID: 11478902 [TBL] [Abstract][Full Text] [Related]
35. Physicochemical characterisation of the two active site mutants Trp(52)-->Phe and Asp(55)-->Val of glucoamylase from Aspergillus niger. Christensen T; Frandsen TP; Kaarsholm NC; Svensson B; Sigurskjold BW Biochim Biophys Acta; 2002 Dec; 1601(2):163-71. PubMed ID: 12445478 [TBL] [Abstract][Full Text] [Related]
36. Evidence for a polysaccharide-binding domain in Hormoconis resinae glucoamylase P: effects of its proteolytic removal on substrate specificity and inhibition by beta-cyclodextrin. Fagerström R Microbiology (Reading); 1994 Sep; 140 ( Pt 9)():2399-407. PubMed ID: 7952191 [TBL] [Abstract][Full Text] [Related]
37. Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. Tung JY; Chang MD; Chou WI; Liu YY; Yeh YH; Chang FY; Lin SC; Qiu ZL; Sun YJ Biochem J; 2008 Nov; 416(1):27-36. PubMed ID: 18588504 [TBL] [Abstract][Full Text] [Related]
38. Thermal unfolding of the starch binding domain of Aspergillus niger glucoamylase. Tanaka A; Karita S; Kosuge Y; Senoo K; Obata H; Kitamoto N Biosci Biotechnol Biochem; 1998 Nov; 62(11):2127-32. PubMed ID: 9972233 [TBL] [Abstract][Full Text] [Related]