These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 7925798)
1. Quiescence and hyporeactivity evoked by activation of cell bodies in the ventrolateral midbrain periaqueductal gray of the rat. Depaulis A; Keay KA; Bandler R Exp Brain Res; 1994; 99(1):75-83. PubMed ID: 7925798 [TBL] [Abstract][Full Text] [Related]
2. Longitudinal neuronal organization of defensive reactions in the midbrain periaqueductal gray region of the rat. Depaulis A; Keay KA; Bandler R Exp Brain Res; 1992; 90(2):307-18. PubMed ID: 1397145 [TBL] [Abstract][Full Text] [Related]
3. Integrated defence reaction elicited by excitatory amino acid microinjection in the midbrain periaqueductal grey region of the unrestrained cat. Bandler R; Carrive P Brain Res; 1988 Jan; 439(1-2):95-106. PubMed ID: 3359200 [TBL] [Abstract][Full Text] [Related]
4. Characterization of pretentorial periaqueductal gray matter neurons mediating intraspecific defensive behaviors in the rat by microinjections of kainic acid. Depaulis A; Bandler R; Vergnes M Brain Res; 1989 May; 486(1):121-32. PubMed ID: 2720424 [TBL] [Abstract][Full Text] [Related]
5. Flight and immobility evoked by excitatory amino acid microinjection within distinct parts of the subtentorial midbrain periaqueductal gray of the cat. Zhang SP; Bandler R; Carrive P Brain Res; 1990 Jun; 520(1-2):73-82. PubMed ID: 2207648 [TBL] [Abstract][Full Text] [Related]
6. Cardiovascular effects of microinjections of opioid agonists into the 'Depressor Region' of the ventrolateral periaqueductal gray region. Keay KA; Crowfoot LJ; Floyd NS; Henderson LA; Christie MJ; Bandler R Brain Res; 1997 Jul; 762(1-2):61-71. PubMed ID: 9262159 [TBL] [Abstract][Full Text] [Related]
7. Immobility and flight associated with antinociception produced by activation of the ventral and lateral/dorsal regions of the rat periaqueductal gray. Morgan MM; Whitney PK; Gold MS Brain Res; 1998 Aug; 804(1):159-66. PubMed ID: 9729359 [TBL] [Abstract][Full Text] [Related]
8. Elicitation of intraspecific defence reactions in the rat from midbrain periaqueductal grey by microinjection of kainic acid, without neurotoxic effects. Bandler R; Depaulis A Neurosci Lett; 1988 Jun; 88(3):291-6. PubMed ID: 3386876 [TBL] [Abstract][Full Text] [Related]
9. Midbrain influences on ventrolateral medullo-spinal neurones in the rat. Lovick TA Exp Brain Res; 1992; 90(1):147-52. PubMed ID: 1521603 [TBL] [Abstract][Full Text] [Related]
10. Different representations of inescapable noxious stimuli in the periaqueductal gray and upper cervical spinal cord of freely moving rats. Keay KA; Clement CI; Depaulis A; Bandler R Neurosci Lett; 2001 Nov; 313(1-2):17-20. PubMed ID: 11684329 [TBL] [Abstract][Full Text] [Related]
11. Brain stem integration of vocalization: role of the nucleus retroambigualis. Zhang SP; Bandler R; Davis PJ J Neurophysiol; 1995 Dec; 74(6):2500-12. PubMed ID: 8747209 [TBL] [Abstract][Full Text] [Related]
12. Comparison of morphine and kainic acid microinjections into identical PAG sites on the activity of RVM neurons. Tortorici V; Morgan MM J Neurophysiol; 2002 Oct; 88(4):1707-15. PubMed ID: 12364500 [TBL] [Abstract][Full Text] [Related]
13. Brain stem integration of vocalization: role of the midbrain periaqueductal gray. Zhang SP; Davis PJ; Bandler R; Carrive P J Neurophysiol; 1994 Sep; 72(3):1337-56. PubMed ID: 7807216 [TBL] [Abstract][Full Text] [Related]
14. The ventrolateral periaqueductal gray projects to caudal brainstem depressor regions: a functional-anatomical and physiological study. Henderson LA; Keay KA; Bandler R Neuroscience; 1998 Jan; 82(1):201-21. PubMed ID: 9483515 [TBL] [Abstract][Full Text] [Related]
15. Inhibition in spinal cord of nociceptive information by electrical stimulation and morphine microinjection at identical sites in midbrain of the cat. Gebhart GF; Sandkühler J; Thalhammer JG; Zimmermann M J Neurophysiol; 1984 Jan; 51(1):75-89. PubMed ID: 6693935 [TBL] [Abstract][Full Text] [Related]
16. Inhibitory and excitatory projections from the dorsal raphe nucleus to neurons in the dorsolateral periaqueductal gray matter in slices of midbrain maintained in vitro. Stezhka VV; Lovick TA Neuroscience; 1994 Sep; 62(1):177-87. PubMed ID: 7816199 [TBL] [Abstract][Full Text] [Related]
17. Deep and superficial noxious stimulation increases Fos-like immunoreactivity in different regions of the midbrain periaqueductal grey of the rat. Keay KA; Bandler R Neurosci Lett; 1993 May; 154(1-2):23-6. PubMed ID: 8361643 [TBL] [Abstract][Full Text] [Related]
18. Relative contribution of the dorsal raphe nucleus and ventrolateral periaqueductal gray to morphine antinociception and tolerance in the rat. Campion KN; Saville KA; Morgan MM Eur J Neurosci; 2016 Nov; 44(9):2667-2672. PubMed ID: 27564986 [TBL] [Abstract][Full Text] [Related]
19. Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat. Van Bockstaele EJ; Aston-Jones G; Pieribone VA; Ennis M; Shipley MT J Comp Neurol; 1991 Jul; 309(3):305-27. PubMed ID: 1717516 [TBL] [Abstract][Full Text] [Related]
20. Convergence of deep somatic and visceral nociceptive information onto a discrete ventrolateral midbrain periaqueductal gray region. Keay KA; Clement CI; Owler B; Depaulis A; Bandler R Neuroscience; 1994 Aug; 61(4):727-32. PubMed ID: 7838371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]