BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

493 related articles for article (PubMed ID: 7925841)

  • 1. Relative survival of striatal projection neurons and interneurons after intrastriatal injection of quinolinic acid in rats.
    Figueredo-Cardenas G; Anderson KD; Chen Q; Veenman CL; Reiner A
    Exp Neurol; 1994 Sep; 129(1):37-56. PubMed ID: 7925841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative resistance of striatal neurons containing calbindin or parvalbumin to quinolinic acid-mediated excitotoxicity compared to other striatal neuron types.
    Figueredo-Cardenas G; Harris CL; Anderson KD; Reiner A
    Exp Neurol; 1998 Feb; 149(2):356-72. PubMed ID: 9500958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient global ischemia in rats yields striatal projection neuron and interneuron loss resembling that in Huntington's disease.
    Meade CA; Figueredo-Cardenas G; Fusco F; Nowak TS; Pulsinelli WA; Reiner A
    Exp Neurol; 2000 Dec; 166(2):307-23. PubMed ID: 11085896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-dependent differences in survival of striatal somatostatin-NPY-NADPH-diaphorase-containing interneurons versus striatal projection neurons after intrastriatal injection of quinolinic acid in rats.
    Figueredo-Cardenas G; Chen Q; Reiner A
    Exp Neurol; 1997 Aug; 146(2):444-57. PubMed ID: 9270055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The differential vulnerability of striatal projection neurons in 3-nitropropionic acid-treated rats does not match that typical of adult-onset Huntington's disease.
    Sun Z; Xie J; Reiner A
    Exp Neurol; 2002 Jul; 176(1):55-65. PubMed ID: 12093082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enkephalinergic striatal projection neurons become less affected by quinolinic acid than substance P-containing striatal projection neurons as rats age.
    Sun Z; Chen Q; Reiner A
    Exp Neurol; 2003 Dec; 184(2):1034-42. PubMed ID: 14769398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific reactions of different striatal neuron types in morphology induced by quinolinic acid in rats.
    Feng Q; Ma Y; Mu S; Wu J; Chen S; Ouyang L; Lei W
    PLoS One; 2014; 9(3):e91512. PubMed ID: 24632560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential localization of the GluR1 and GluR2 subunits of the AMPA-type glutamate receptor among striatal neuron types in rats.
    Deng YP; Xie JP; Wang HB; Lei WL; Chen Q; Reiner A
    J Chem Neuroanat; 2007 Jul; 33(4):167-92. PubMed ID: 17446041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of suicide transport lesions of the striatonigral or striatopallidal pathways on subsets of striatal neurons.
    Roberts RC; Harrison MB; Francis SM; Wiley RG
    Exp Neurol; 1993 Dec; 124(2):242-52. PubMed ID: 7507060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Administration of recombinant human Activin-A has powerful neurotrophic effects on select striatal phenotypes in the quinolinic acid lesion model of Huntington's disease.
    Hughes PE; Alexi T; Williams CE; Clark RG; Gluckman PD
    Neuroscience; 1999; 92(1):197-209. PubMed ID: 10392842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The vulnerability of striatal projection neurons and interneurons to excitotoxicity is differentially regulated by dopamine during development.
    Pezzi S; Checa N; Alberch J
    Int J Dev Neurosci; 2005 Jun; 23(4):343-9. PubMed ID: 15927758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The IGF-I amino-terminal tripeptide glycine-proline-glutamate (GPE) is neuroprotective to striatum in the quinolinic acid lesion animal model of Huntington's disease.
    Alexi T; Hughes PE; van Roon-Mom WM; Faull RL; Williams CE; Clark RG; Gluckman PD
    Exp Neurol; 1999 Sep; 159(1):84-97. PubMed ID: 10486177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential loss of striatal projection systems in Huntington's disease: a quantitative immunohistochemical study.
    Deng YP; Albin RL; Penney JB; Young AB; Anderson KD; Reiner A
    J Chem Neuroanat; 2004 Jun; 27(3):143-64. PubMed ID: 15183201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of intrastriatal injections of quinolinic acid and 3-nitropropionic acid for use in animal models of Huntington's disease.
    Shear DA; Dong J; Gundy CD; Haik-Creguer KL; Dunbar GL
    Prog Neuropsychopharmacol Biol Psychiatry; 1998 Oct; 22(7):1217-40. PubMed ID: 9829299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic quinolinic acid lesions in rats closely resemble Huntington's disease.
    Beal MF; Ferrante RJ; Swartz KJ; Kowall NW
    J Neurosci; 1991 Jun; 11(6):1649-59. PubMed ID: 1710657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential perikaryal localization in rats of D1 and D2 dopamine receptors on striatal projection neuron types identified by retrograde labeling.
    Deng YP; Lei WL; Reiner A
    J Chem Neuroanat; 2006 Dec; 32(2-4):101-16. PubMed ID: 16914290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunohistochemical localization of DARPP-32 in striatal projection neurons and striatal interneurons: implications for the localization of D1-like dopamine receptors on different types of striatal neurons.
    Anderson KD; Reiner A
    Brain Res; 1991 Dec; 568(1-2):235-43. PubMed ID: 1839966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term lithium treatment promotes neuronal survival and proliferation in rat striatum infused with quinolinic acid, an excitotoxic model of Huntington's disease.
    Senatorov VV; Ren M; Kanai H; Wei H; Chuang DM
    Mol Psychiatry; 2004 Apr; 9(4):371-85. PubMed ID: 14702090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early effects of intrastriatal injections of quinolinic acid on microtubule-associated protein-2 and neuropeptides in rat basal ganglia.
    Bordelon YM; Chesselet MF
    Neuroscience; 1999; 93(3):843-53. PubMed ID: 10473250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid.
    Beal MF; Brouillet E; Jenkins BG; Ferrante RJ; Kowall NW; Miller JM; Storey E; Srivastava R; Rosen BR; Hyman BT
    J Neurosci; 1993 Oct; 13(10):4181-92. PubMed ID: 7692009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.