These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 7926047)
1. Lack of correspondence between the room-temperature phosphorescence decay-components and Trp residues in a series of Trp-->Cys or Trp-->Phe mutants of human carbonic anhydrase II. Bergenhem NC; Schlyer BD; Steel DG; Gafni A; Carlsson U; Jonsson BH FEBS Lett; 1994 Oct; 353(2):177-9. PubMed ID: 7926047 [TBL] [Abstract][Full Text] [Related]
2. Formation of local native-like tertiary structures in the slow refolding reaction of human carbonic anhydrase II as monitored by circular dichroism on tryptophan mutants. Andersson D; Freskgård PO; Jonsson BH; Carlsson U Biochemistry; 1997 Apr; 36(15):4623-30. PubMed ID: 9109672 [TBL] [Abstract][Full Text] [Related]
3. Intramolecular quenching of tryptophan phosphorescence in short peptides and proteins. Gonnelli M; Strambini GB Photochem Photobiol; 2005; 81(3):614-22. PubMed ID: 15689181 [TBL] [Abstract][Full Text] [Related]
4. Time-resolved room temperature protein phosphorescence: nonexponential decay from single emitting tryptophans. Schlyer BD; Schauerte JA; Steel DG; Gafni A Biophys J; 1994 Sep; 67(3):1192-202. PubMed ID: 7811933 [TBL] [Abstract][Full Text] [Related]
5. Contribution of individual tryptophan residues to the fluorescence spectrum of native and denatured forms of human carbonic anhydrase II. Mårtensson LG; Jonasson P; Freskgård PO; Svensson M; Carlsson U; Jonsson BH Biochemistry; 1995 Jan; 34(3):1011-21. PubMed ID: 7827017 [TBL] [Abstract][Full Text] [Related]
6. Differentiation of the local structure around tryptophan 51 and 64 in recombinant human erythropoietin by tryptophan phosphorescence. Kerwin BA; Aoki KH; Gonelli M; Strambini GB Photochem Photobiol; 2008; 84(5):1172-81. PubMed ID: 18331401 [TBL] [Abstract][Full Text] [Related]
7. Carbonic anhydrase activators: kinetic and X-ray crystallographic study for the interaction of D- and L-tryptophan with the mammalian isoforms I-XIV. Temperini C; Innocenti A; Scozzafava A; Supuran CT Bioorg Med Chem; 2008 Sep; 16(18):8373-8. PubMed ID: 18774300 [TBL] [Abstract][Full Text] [Related]
8. Phosphorescence lifetime of tryptophan in proteins. Gonnelli M; Strambini GB Biochemistry; 1995 Oct; 34(42):13847-57. PubMed ID: 7577979 [TBL] [Abstract][Full Text] [Related]
9. Tertiary structure formation at specific tryptophan side chains in the refolding of human carbonic anhydrase II. Jonasson P; Aronsson G; Carlsson U; Jonsson BH Biochemistry; 1997 Apr; 36(17):5142-8. PubMed ID: 9136875 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the tryptophan residues of Escherechia coli alkaline phosphatase by phosphorescence and optically detected magnetic resonance spectroscopy. Ghosh S; Misra A; Ozarowski A; Stuart C; Maki AH Biochemistry; 2001 Dec; 40(49):15024-30. PubMed ID: 11732924 [TBL] [Abstract][Full Text] [Related]
11. Tyrosine quenching of tryptophan phosphorescence in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. Strambini GB; Gabellieri E; Gonnelli M; Rahuel-Clermont S; Branlant G Biophys J; 1998 Jun; 74(6):3165-72. PubMed ID: 9635769 [TBL] [Abstract][Full Text] [Related]
12. Luminescence studies of perturbation of tryptophan residues of tubulin in the complexes of tubulin with colchicine and colchicine analogues. Sardar PS; Maity SS; Das L; Ghosh S Biochemistry; 2007 Dec; 46(50):14544-56. PubMed ID: 18041823 [TBL] [Abstract][Full Text] [Related]
13. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway. Strambini GB; Cioni P; Cook PF Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597 [TBL] [Abstract][Full Text] [Related]
14. Catalytic enhancement of human carbonic anhydrase III by replacement of phenylalanine-198 with leucine. LoGrasso PV; Tu CK; Jewell DA; Wynns GC; Laipis PJ; Silverman DN Biochemistry; 1991 Aug; 30(34):8463-70. PubMed ID: 1909176 [TBL] [Abstract][Full Text] [Related]
15. Assignment of the contribution of the tryptophan residues to the circular dichroism spectrum of human carbonic anhydrase II. Freskgård PO; Mårtensson LG; Jonasson P; Jonsson BH; Carlsson U Biochemistry; 1994 Nov; 33(47):14281-8. PubMed ID: 7947839 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence and phosphorescence of tryptophan in peptides of different length and sequence. Radotić K; Melø TB; Leblanc RM; Yousef YA; Naqvi KR J Photochem Photobiol B; 2016 Apr; 157():120-8. PubMed ID: 26916609 [TBL] [Abstract][Full Text] [Related]
17. Mapping the folding intermediate of human carbonic anhydrase II. Probing substructure by chemical reactivity and spin and fluorescence labeling of engineered cysteine residues. Svensson M; Jonasson P; Freskgård PO; Jonsson BH; Lindgren M; Mårtensson LG; Gentile M; Borén K; Carlsson U Biochemistry; 1995 Jul; 34(27):8606-20. PubMed ID: 7612602 [TBL] [Abstract][Full Text] [Related]
18. Unusual optical resolution of all four tryptophan residues in MPT63 protein by phosphorescence spectroscopy: assignment and significance. Ghosh R; Mukherjee M; Chattopadhyay K; Ghosh S J Phys Chem B; 2012 Oct; 116(41):12489-500. PubMed ID: 22998652 [TBL] [Abstract][Full Text] [Related]
19. Characterization of f-actin tryptophan phosphorescence in the presence and absence of tryptophan-free myosin motor domain. Bódis E; Strambini GB; Gonnelli M; Málnási-Csizmadia A; Somogyi B Biophys J; 2004 Aug; 87(2):1146-54. PubMed ID: 15298917 [TBL] [Abstract][Full Text] [Related]
20. Denatured states of human carbonic anhydrase II: an NMR study of hydrogen/deuterium exchange at tryptophan-indole-H(N) sites. Jonasson P; Kjellsson A; Sethson I; Jonsson BH FEBS Lett; 1999 Feb; 445(2-3):361-5. PubMed ID: 10094490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]