These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 7926347)

  • 1. Reduction of acetaminophen interference in glucose sensors by a composite Nafion membrane: demonstration in rats and man.
    Moatti-Sirat D; Poitout V; Thomé V; Gangnerau MN; Zhang Y; Hu Y; Wilson GS; Lemonnier F; Klein JC; Reach G
    Diabetologia; 1994 Jun; 37(6):610-6. PubMed ID: 7926347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating in vitro and in vivo the interference of ascorbate and acetaminophen on glucose detection by a needle-type glucose sensor.
    Moatti-Sirat D; Velho G; Reach G
    Biosens Bioelectron; 1992; 7(5):345-52. PubMed ID: 1632948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of interference on the performance of glucose enzyme electrodes using Nafion coatings.
    Vaidya R; Atanasov P; Wilkins E
    Med Eng Phys; 1995 Sep; 17(6):416-24. PubMed ID: 7582325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo performance and lifetime of perfluorinated ionomer-coated glucose sensors after high-temperature curing.
    Moussy F; Jakeway S; Harrison DJ; Rajotte RV
    Anal Chem; 1994 Nov; 66(22):3882-8. PubMed ID: 7810896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elimination of the acetaminophen interference in an implantable glucose sensor.
    Zhang Y; Hu Y; Wilson GS; Moatti-Sirat D; Poitout V; Reach G
    Anal Chem; 1994 Apr; 66(7):1183-8. PubMed ID: 8160962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Cu nanoflowers modified the flexible needle-type microelectrode and its application in continuous monitoring glucose in vivo.
    Fang Y; Wang S; Liu Y; Xu Z; Zhang K; Guo Y
    Biosens Bioelectron; 2018 Jul; 110():44-51. PubMed ID: 29587193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses and calibration of amperometric glucose sensors implanted in the subcutaneous tissue of man.
    Pickup JC; Claremont DJ; Shaw GW
    Acta Diabetol; 1993; 30(3):143-8. PubMed ID: 8111074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A miniaturized Nafion-based glucose sensor: in vitro and in vivo evaluation in dogs.
    Moussy F; Harrison DJ; Rajotte RV
    Int J Artif Organs; 1994 Feb; 17(2):88-94. PubMed ID: 8039946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new amperometric glucose microsensor: in vitro and short-term in vivo evaluation.
    Ward WK; Jansen LB; Anderson E; Reach G; Klein JC; Wilson GS
    Biosens Bioelectron; 2002 Mar; 17(3):181-9. PubMed ID: 11839471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An investigation of long-term performance of minimally invasive glucose biosensors.
    Yu B; Ju Y; West L; Moussy Y; Moussy F
    Diabetes Technol Ther; 2007 Jun; 9(3):265-75. PubMed ID: 17561797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using MPTMS as permselective membranes of biosensors.
    Yang YL; Tseng TF; Lou SL
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6625-8. PubMed ID: 18003544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of subcutaneously implanted needle-type glucose sensors employing a novel trilayer coating.
    Moussy F; Harrison DJ; O'Brien DW; Rajotte RV
    Anal Chem; 1993 Aug; 65(15):2072-7. PubMed ID: 8372970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Evidence of Acetaminophen Interference with Subcutaneous Glucose Sensing in Humans: A Pilot Study.
    Basu A; Veettil S; Dyer R; Peyser T; Basu R
    Diabetes Technol Ther; 2016 Feb; 18 Suppl 2(Suppl 2):S243-7. PubMed ID: 26784129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards continuous glucose monitoring: in vivo evaluation of a miniaturized glucose sensor implanted for several days in rat subcutaneous tissue.
    Moatti-Sirat D; Capron F; Poitout V; Reach G; Bindra DS; Zhang Y; Wilson GS; Thévenot DR
    Diabetologia; 1992 Mar; 35(3):224-30. PubMed ID: 1373393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo mineralization of Nafion membrane used for implantable glucose sensors.
    Mercado RC; Moussy F
    Biosens Bioelectron; 1998 Feb; 13(2):133-45. PubMed ID: 9597730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Miniaturized amperometric biosensor based on xanthine oxidase for monitoring hypoxanthine in cell culture media.
    Mao L; Xu F; Xu Q; Jin L
    Anal Biochem; 2001 May; 292(1):94-101. PubMed ID: 11319822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal environment for glucose oxidase in perfluorosulfonated ionomer membranes: improvement of first-generation biosensors.
    Karyakin AA; Kotel'nikova EA; Lukachova LV; Karyakina EE; Wang J
    Anal Chem; 2002 Apr; 74(7):1597-603. PubMed ID: 12033250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of inflammatory cells and serum on the performance of implantable glucose sensors.
    Gerritsen M; Jansen JA; Kros A; Vriezema DM; Sommerdijk NA; Nolte RJ; Lutterman JA; Van Hövell SW; Van der Gaag A
    J Biomed Mater Res; 2001 Jan; 54(1):69-75. PubMed ID: 11077404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cast thin film biosensor design based on a Nafion backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function.
    Tsai YC; Li SC; Chen JM
    Langmuir; 2005 Apr; 21(8):3653-8. PubMed ID: 15807616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and short-term in vivo characteristics of a Kel-F thin film modified glucose sensor.
    Kang SK; Jeong RA; Park S; Chung TD; Park S; Kim HC
    Anal Sci; 2003 Nov; 19(11):1481-6. PubMed ID: 14640443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.