These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 7926662)
1. Phosphatase-mediated heavy metal accumulation by a Citrobacter sp. and related enterobacteria. Macaskie LE; Bonthrone KM; Rouch DA FEMS Microbiol Lett; 1994 Aug; 121(2):141-6. PubMed ID: 7926662 [TBL] [Abstract][Full Text] [Related]
2. Phosphatase production and activity in Citrobacter freundii and a naturally occurring, heavy-metal-accumulating Citrobacter sp. Montgomery DM; Dean AC; Wiffen P; Macaskie LE Microbiology (Reading); 1995 Oct; 141 ( Pt 10)():2433-41. PubMed ID: 7582003 [TBL] [Abstract][Full Text] [Related]
3. Localization of enzymically enhanced heavy metal accumulation by Citrobacter sp. and metal accumulation in vitro by liposomes containing entrapped enzyme. Jeong BC; Hawes C; Bonthrone KM; Macaskie LE Microbiology (Reading); 1997 Jul; 143 ( Pt 7)():2497-2507. PubMed ID: 9245830 [TBL] [Abstract][Full Text] [Related]
4. Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO2PO4. Macaskie LE; Empson RM; Cheetham AK; Grey CP; Skarnulis AJ Science; 1992 Aug; 257(5071):782-4. PubMed ID: 1496397 [TBL] [Abstract][Full Text] [Related]
5. Enzymically mediated bioprecipitation of uranium by a Citrobacter sp. : a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Macaskie LE; Bonthrone KM; Yong P; Goddard DT Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():1855-1867. PubMed ID: 10931890 [TBL] [Abstract][Full Text] [Related]
6. Phosphate release and heavy metal accumulation by biofilm-immobilized and chemically-coupled cells of a Citrobacter sp. pre-grown in continuous culture. Finlay JA; Allan VJ; Conner A; Callow ME; Basnakova G; Macaskie LE Biotechnol Bioeng; 1999 Apr; 63(1):87-97. PubMed ID: 10099584 [TBL] [Abstract][Full Text] [Related]
7. The use of Escherichia coli bearing a phoN gene for the removal of uranium and nickel from aqueous flows. Basnakova G; Stephens ER; Thaller MC; Rossolini GM; Macaskie LE Appl Microbiol Biotechnol; 1998 Aug; 50(2):266-72. PubMed ID: 9763695 [TBL] [Abstract][Full Text] [Related]
8. Enzymically accelerated biomineralization of heavy metals: application to the removal of americium and plutonium from aqueous flows. Macaskie LE; Jeong BC; Tolley MR FEMS Microbiol Rev; 1994 Aug; 14(4):351-67. PubMed ID: 7917422 [TBL] [Abstract][Full Text] [Related]
9. Purification and characterization of acid-type phosphatases from a heavy-metal-accumulating Citrobacter sp. Jeong BC; Poole PS; Willis AC; Macaskie LE Arch Microbiol; 1998 Feb; 169(2):166-73. PubMed ID: 9446688 [TBL] [Abstract][Full Text] [Related]
10. Effect of substrate concentration and nitrate inhibition on product release and heavy metal removal by a Citrobacter sp. Yong P; Macaskie LE Biotechnol Bioeng; 1997 Sep; 55(6):821-30. PubMed ID: 18636593 [TBL] [Abstract][Full Text] [Related]
11. Cadmium accumulation by immobilized cells of a Citrobacter sp. using various phosphate donors. Michel LJ; Macaskie LE; Dean AC Biotechnol Bioeng; 1986 Sep; 28(9):1358-65. PubMed ID: 18561225 [TBL] [Abstract][Full Text] [Related]
12. Cadmium accumulation by a Citrobacter sp. immobilized on gel and solid supports: Applicability to the treatment of liquid wastes containing heavy metal cations. Macaskie LE; Wates JM; Dean AC Biotechnol Bioeng; 1987 Jul; 30(1):66-73. PubMed ID: 18576584 [TBL] [Abstract][Full Text] [Related]
13. Biosorption of heavy metals by Pseudomonas species isolated from sugar industry. Naz T; Khan MD; Ahmed I; Rehman SU; Rha ES; Malook I; Jamil M Toxicol Ind Health; 2016 Sep; 32(9):1619-27. PubMed ID: 25739395 [TBL] [Abstract][Full Text] [Related]
14. Cadmium accumulation by a Citrobacter sp. Macaskie LE; Dean AC J Gen Microbiol; 1984 Jan; 130(1):53-62. PubMed ID: 6707610 [TBL] [Abstract][Full Text] [Related]
15. Protein engineering of class-A non-specific acid phosphatase (PhoN) of Salmonella typhimurium: modulation of the pH-activity profile. Makde RD; Dikshit K; Kumar V Biomol Eng; 2006 Oct; 23(5):247-51. PubMed ID: 16901752 [TBL] [Abstract][Full Text] [Related]
16. Purification, characterization, and gene cloning of glucose-1-phosphatase from Citrobacter braakii. Kim YO; Kim HW; Park IS; Lee JH; Lee SJ; Kim KK J Gen Appl Microbiol; 2009 Oct; 55(5):345-50. PubMed ID: 19940380 [TBL] [Abstract][Full Text] [Related]
17. The dynamic behavior and mechanism of uranium (VI) biomineralization in Enterobacter sp. X57. Zeng Q; Zhu T; Wen Y; Li F; Cheng Y; Chen S; Lan T; Yang Y; Liao J; Sun Q; Liu N Chemosphere; 2022 Jul; 298():134196. PubMed ID: 35276103 [TBL] [Abstract][Full Text] [Related]
18. Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter Sp. Maru BT; Constanti M; Stchigel AM; Medina F; Sueiras JE Biotechnol Prog; 2013; 29(1):31-8. PubMed ID: 23074037 [TBL] [Abstract][Full Text] [Related]
19. Biochemical basis of mercury remediation and bioaccumulation by Enterobacter sp. EMB21. Sinha A; Kumar S; Khare SK Appl Biochem Biotechnol; 2013 Jan; 169(1):256-67. PubMed ID: 23179279 [TBL] [Abstract][Full Text] [Related]
20. Engineering of Deinococcus radiodurans R1 for bioprecipitation of uranium from dilute nuclear waste. Appukuttan D; Rao AS; Apte SK Appl Environ Microbiol; 2006 Dec; 72(12):7873-8. PubMed ID: 17056698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]