These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 7926665)

  • 1. Influence of glucose and other substrates on electric field and polyethylene glycol-mediated transformation of intact yeast cells.
    Ganeva V; Galutzov B; Teissie J
    FEMS Microbiol Lett; 1994 Aug; 121(2):159-64. PubMed ID: 7926665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of pulsing and postpulsing media tonicity on electrotransformation of intact yeast cells.
    Ganeva V; Galutzov B
    FEMS Microbiol Lett; 1993 Aug; 112(1):81-5. PubMed ID: 8405952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A general method for polyethylene-glycol-induced genetic transformation of bacteria and yeast.
    Klebe RJ; Harriss JV; Sharp ZD; Douglas MG
    Gene; 1983 Nov; 25(2-3):333-41. PubMed ID: 6363214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional and metabolic response in yeast Saccharomyces cerevisiae cells during polyethylene glycol-dependent transformation.
    Kawai S; Phan TA; Kono E; Harada K; Okai C; Fukusaki E; Murata K
    J Basic Microbiol; 2009 Feb; 49(1):73-81. PubMed ID: 18798174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of n-alcohols on the electrotransformation and permeability of Saccharomyces cerevisiae.
    Ganeva VJ; Tsoneva IC
    Appl Microbiol Biotechnol; 1993 Mar; 38(6):795-8. PubMed ID: 7763536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrotransformation of Saccharomyces cerevisiae.
    Meilhoc E; Teissie J
    Methods Mol Biol; 2020; 2050():187-193. PubMed ID: 31468494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryopreservation of competent intact yeast cells for efficient electroporation.
    Suga M; Isobe M; Hatakeyama T
    Yeast; 2000 Jul; 16(10):889-96. PubMed ID: 10870100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualized investigation of yeast transformation induced with Li+ and polyethylene glycol.
    Chen P; Liu HH; Cui R; Zhang ZL; Pang DW; Xie ZX; Zheng HZ; Lu ZX; Tong H
    Talanta; 2008 Oct; 77(1):262-8. PubMed ID: 18804630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast kinetics studies of Escherichia coli electrotransformation.
    Eynard N; Sixou S; Duran N; Teissie J
    Eur J Biochem; 1992 Oct; 209(1):431-6. PubMed ID: 1396716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting polysaccharide storage in group A Streptococcus pyogenes in non-proliferating cell suspensions.
    McFarland CR; Boyle-Rockwell P; Rodriguez JF
    Microbios; 1981; 32(129-130):143-53. PubMed ID: 6755186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of polyhydroxy compounds on the structure and activity of alpha-chymotrypsin.
    Simon LM; Kotormán M; Garab G; Laczkó I
    Biochem Biophys Res Commun; 2002 Apr; 293(1):416-20. PubMed ID: 12054616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method.
    Gietz RD; Schiestl RH
    Nat Protoc; 2007; 2(1):1-4. PubMed ID: 17401330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of high medium pH on growth, metabolism and transport in Saccharomyces cerevisiae.
    Peña A; Sánchez NS; Álvarez H; Calahorra M; Ramírez J
    FEMS Yeast Res; 2015 Mar; 15(2):. PubMed ID: 25673753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High efficiency transformation of intact yeast cells by electric field pulses.
    Meilhoc E; Masson JM; Teissié J
    Biotechnology (N Y); 1990 Mar; 8(3):223-7. PubMed ID: 1366502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of proton fluxes across the cytoplasmic membrane of the yeast Saccharomyces cerevisiae.
    Haworth RS; Lemire BD; Crandall D; Cragoe EJ; Fliegel L
    Biochim Biophys Acta; 1991 Dec; 1098(1):79-89. PubMed ID: 1661160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of the transformation efficiency of Sacchaaromyces cerevisiae by altering carbon sources in pre-culture.
    Konishi T; Harata M
    Biosci Biotechnol Biochem; 2014; 78(6):1090-3. PubMed ID: 25036141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors influencing autolysis of Saccharomyces cerevisiae cells induced by pulsed electric fields.
    Martínez JM; Delso C; Aguilar D; Cebrián G; Álvarez I; Raso J
    Food Microbiol; 2018 Aug; 73():67-72. PubMed ID: 29526228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A closed concept of extractive whole cell microbial transformation of benzaldehyde into L-phenylacetylcarbinol by Saccharomyces cerevisiae in novel polyethylene-glycol-induced cloud-point system.
    Wang Z; Liang R; Xu JH; Liu Y; Qi H
    Appl Biochem Biotechnol; 2010 Mar; 160(6):1865-77. PubMed ID: 19562522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method.
    Gietz RD; Schiestl RH
    Nat Protoc; 2007; 2(1):31-4. PubMed ID: 17401334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method.
    Gietz RD; Schiestl RH
    Nat Protoc; 2007; 2(1):38-41. PubMed ID: 17401336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.