These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 7926675)
1. Effect of upstream sequences of the ADH1 promoter on the expression of Hormoconis resinae glucoamylase P by Saccharomyces cerevisiae. Vainio AE FEMS Microbiol Lett; 1994 Aug; 121(2):229-35. PubMed ID: 7926675 [TBL] [Abstract][Full Text] [Related]
2. Cloning and expression of Hormoconis resinae glucoamylase P cDNA in Saccharomyces cerevisiae. Vainio AE; Torkkeli HT; Tuusa T; Aho SA; Fagerström BR; Korhola MP Curr Genet; 1993; 24(1-2):38-44. PubMed ID: 8358830 [TBL] [Abstract][Full Text] [Related]
3. Glucoamylase P gene of Hormoconis resinae: molecular cloning, sequencing and introduction into Trichoderma reesei. Joutsjoki VV; Torkkeli TK FEMS Microbiol Lett; 1992 Dec; 78(2-3):237-43. PubMed ID: 1490604 [TBL] [Abstract][Full Text] [Related]
4. Construction of an alpha-amylase/glucoamylase fusion gene and its expression in Saccharomyces cerevisiae. Shibuya I; Tamura G; Shima H; Ishikawa T; Hara S Biosci Biotechnol Biochem; 1992 Jun; 56(6):884-9. PubMed ID: 1368253 [TBL] [Abstract][Full Text] [Related]
5. Transformation of Trichoderma reesei with the Hormoconis resinae glucoamylase P (gamP) gene: production of a heterologous glucoamylase by Trichoderma reesei. Joutsjoki VV; Torkkeli TK; Nevalainen KM Curr Genet; 1993 Sep; 24(3):223-8. PubMed ID: 8221931 [TBL] [Abstract][Full Text] [Related]
6. Positive and negative elements upstream of the meiosis-specific glucoamylase gene in Saccharomyces cerevisiae. Kihara K; Nakamura M; Akada R; Yamashita I Mol Gen Genet; 1991 May; 226(3):383-92. PubMed ID: 2038303 [TBL] [Abstract][Full Text] [Related]
7. Efficient expression of the Saccharomyces cerevisiae glycolytic gene ADH1 is dependent upon a cis-acting regulatory element (UASRPG) found initially in genes encoding ribosomal proteins. Tornow J; Santangelo GM Gene; 1990 May; 90(1):79-85. PubMed ID: 2199331 [TBL] [Abstract][Full Text] [Related]
8. Cloning of Corticium rolfsii glucoamylase cDNA and its expression in Saccharomyces cerevisiae. Nagasaka Y; Muraki N; Kimura A; Suto M; Yokota A; Tomita F Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):451-8. PubMed ID: 8597548 [TBL] [Abstract][Full Text] [Related]
9. Secretion of the Hormoconis resinae glucoamylase P enzyme from Trichoderma reesei directed by the natural and the cbh1 gene secretion signal. Joutsjoki VV; Kuittinen M; Torkkeli TK; Suominen PL FEMS Microbiol Lett; 1993 Sep; 112(3):281-6. PubMed ID: 8224791 [TBL] [Abstract][Full Text] [Related]
10. Modifications to the ADH1 promoter of Saccharomyces cerevisiae for efficient production of heterologous proteins. Ruohonen L; Aalto MK; Keränen S J Biotechnol; 1995 May; 39(3):193-203. PubMed ID: 7766401 [TBL] [Abstract][Full Text] [Related]
11. Expression and secretion of glucoamylase of Aspergillus niger in Saccharomyces cerevisiae. Tang G; Gong H; Zhong L; Yang K Chin J Biotechnol; 1994; 10(3):163-8. PubMed ID: 7893936 [TBL] [Abstract][Full Text] [Related]
12. Secretion of Escherichia coli beta-galactosidase in Saccharomyces cerevisiae using the signal sequence from the glucoamylase-encoding STA2 gene. Vanoni M; Porro D; Martegani E; Alberghina L Biochem Biophys Res Commun; 1989 Nov; 164(3):1331-8. PubMed ID: 2511842 [TBL] [Abstract][Full Text] [Related]
13. Overexpression and characterization of Aspergillus awamori wild-type and mutant glucoamylase secreted by the methylotrophic yeast Pichia pastoris: comparison with wild-type recombinant glucoamylase produced using Saccharomyces cerevisiae and Aspergillus niger as hosts. Fierobe HP; Mirgorodskaya E; Frandsen TP; Roepstorff P; Svensson B Protein Expr Purif; 1997 Mar; 9(2):159-70. PubMed ID: 9056481 [TBL] [Abstract][Full Text] [Related]
14. Construction by one-step gene replacement of Trichoderma reesei strains that produce the glucoamylase P of Hormoconis resinae. Joutsjoki VV Curr Genet; 1994; 26(5-6):422-9. PubMed ID: 7874735 [TBL] [Abstract][Full Text] [Related]
15. Adjacent upstream activation sequence elements synergistically regulate transcription of ADH2 in Saccharomyces cerevisiae. Yu J; Donoviel MS; Young ET Mol Cell Biol; 1989 Jan; 9(1):34-42. PubMed ID: 2648133 [TBL] [Abstract][Full Text] [Related]
16. Multiple positive and negative cis-acting elements of the STA2 gene regulate glucoamylase synthesis in Saccharomyces cerevisiae. Lambrechts MG; Pretorius IS; D'Aguanno VS; Sollitti P; Marmur J Gene; 1994 Sep; 146(2):137-44. PubMed ID: 8076812 [TBL] [Abstract][Full Text] [Related]
17. Functional analysis of multiple AUG codons in the transcripts of the STA2 glucoamylase gene from Saccharomyces cerevisiae. Vivier MA; Sollitti P; Pretorius IS Mol Gen Genet; 1999 Feb; 261(1):11-20. PubMed ID: 10071205 [TBL] [Abstract][Full Text] [Related]
18. Integration of glucoamylase gene from Aspergillus niger into Saccharomyces cerevisiae genome and its stable expression. Tang G; Yang K Chin J Biotechnol; 1995; 11(4):237-41. PubMed ID: 8739101 [TBL] [Abstract][Full Text] [Related]
19. Expression of the Arxula adeninivorans glucoamylase gene in Kluyveromyces lactis. Bui DM; Kunze I; Horstmann C; Schmidt T; Breunig KD; Kunze G Appl Microbiol Biotechnol; 1996 Mar; 45(1-2):102-6. PubMed ID: 8920185 [TBL] [Abstract][Full Text] [Related]
20. Evolution of a glucose-regulated ADH gene in the genus Saccharomyces. Young ET; Sloan J; Miller B; Li N; van Riper K; Dombek KM Gene; 2000 Mar; 245(2):299-309. PubMed ID: 10717481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]