These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 7926913)

  • 1. Methanogens outcompete sulphate reducing bacteria for H2 in the human colon.
    Strocchi A; Furne J; Ellis C; Levitt MD
    Gut; 1994 Aug; 35(8):1098-101. PubMed ID: 7926913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competition for hydrogen by human faecal bacteria: evidence for the predominance of methane producing bacteria.
    Strocchi A; Furne JK; Ellis CJ; Levitt MD
    Gut; 1991 Dec; 32(12):1498-501. PubMed ID: 1773956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of dietary sulphate in the regulation of methanogenesis in the human large intestine.
    Christl SU; Gibson GR; Cummings JH
    Gut; 1992 Sep; 33(9):1234-8. PubMed ID: 1427377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competition for hydrogen between sulphate-reducing bacteria and methanogenic bacteria from the human large intestine.
    Gibson GR; Cummings JH; Macfarlane GT
    J Appl Bacteriol; 1988 Sep; 65(3):241-7. PubMed ID: 2852666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial equol production attenuates colonic methanogenesis and sulphidogenesis in vitro.
    Bolca S; Verstraete W
    Anaerobe; 2010 Jun; 16(3):247-52. PubMed ID: 20298796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative pathways for hydrogen disposal during fermentation in the human colon.
    Gibson GR; Cummings JH; Macfarlane GT; Allison C; Segal I; Vorster HH; Walker AR
    Gut; 1990 Jun; 31(6):679-83. PubMed ID: 2379871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area.
    Nauhaus K; Boetius A; Krüger M; Widdel F
    Environ Microbiol; 2002 May; 4(5):296-305. PubMed ID: 12080959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen sulphide and total acid-volatile sulphide in faeces, determined with a direct spectrophotometric method.
    Florin TH
    Clin Chim Acta; 1991 Feb; 196(2-3):127-34. PubMed ID: 2029779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen.
    Abram JW; Nedwell DB
    Arch Microbiol; 1978 Apr; 117(1):89-92. PubMed ID: 678014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A possible role for bile acid in the control of methanogenesis and the accumulation of hydrogen gas in the human colon.
    Florin TH; Jabbar IA
    J Gastroenterol Hepatol; 1994; 9(2):112-7. PubMed ID: 8003641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulphate reduction and methanogenesis in the ovine rumen and porcine caecum: a comparison of two microbial ecosystems.
    Ushida K; Ohashi Y; Tokura M; Miyazaki K; Kojima Y
    Dtsch Tierarztl Wochenschr; 1995 Apr; 102(4):154-6. PubMed ID: 7555693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of metabolic inhibitors to study H2 consumption by human feces: evidence for a pathway other than methanogenesis and sulfate reduction.
    Strocchi A; Ellis CJ; Levitt MD
    J Lab Clin Med; 1993 Feb; 121(2):320-7. PubMed ID: 8433043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors affecting hydrogen production and consumption by human fecal flora. The critical roles of hydrogen tension and methanogenesis.
    Strocchi A; Levitt MD
    J Clin Invest; 1992 Apr; 89(4):1304-11. PubMed ID: 1556190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production, metabolism, and excretion of hydrogen in the large intestine.
    Christl SU; Murgatroyd PR; Gibson GR; Cummings JH
    Gastroenterology; 1992 Apr; 102(4 Pt 1):1269-77. PubMed ID: 1551534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carriage, quantification, and predominance of methanogens and sulfate-reducing bacteria in faecal samples.
    Stewart JA; Chadwick VS; Murray A
    Lett Appl Microbiol; 2006 Jul; 43(1):58-63. PubMed ID: 16834722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.
    Stams AJ; Plugge CM; de Bok FA; van Houten BH; Lens P; Dijkman H; Weijma J
    Water Sci Technol; 2005; 52(1-2):13-20. PubMed ID: 16187442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis.
    Pitcher MC; Beatty ER; Cummings JH
    Gut; 2000 Jan; 46(1):64-72. PubMed ID: 10601057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut.
    Gibson GR; Macfarlane GT; Cummings JH
    J Appl Bacteriol; 1988 Aug; 65(2):103-11. PubMed ID: 3204069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermophilic (55 degrees C) conversion of methanol in methanogenic-UASB reactors: influence of sulphate on methanol degradation and competition.
    Paulo PL; Vallero MV; Treviño RH; Lettinga G; Lens PN
    J Biotechnol; 2004 Jul; 111(1):79-88. PubMed ID: 15196772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkyl halides, super hydrogen production and the pathogenesis of pneumatosis cystoides coli.
    Florin TH
    Gut; 1997 Dec; 41(6):778-84. PubMed ID: 9462210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.