These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7927374)

  • 1. Modeling current density distributions during transcutaneous cardiac pacing.
    Panescu D; Webster JG; Stratbucker RA
    IEEE Trans Biomed Eng; 1994 Jun; 41(6):549-55. PubMed ID: 7927374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of cardiac defibrillation by three-dimensional finite element modeling of the human thorax.
    Panescu D; Webster JG; Tompkins WJ; Stratbucker RA
    IEEE Trans Biomed Eng; 1995 Feb; 42(2):185-92. PubMed ID: 7868146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nonlinear finite element model of the electrode-electrolyte-skin system.
    Panescu D; Webster JG; Stratbucker RA
    IEEE Trans Biomed Eng; 1994 Jul; 41(7):681-7. PubMed ID: 7927389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element analysis of cardiac defibrillation current distributions.
    Sepulveda NG; Wikswo JP; Echt DS
    IEEE Trans Biomed Eng; 1990 Apr; 37(4):354-65. PubMed ID: 2338348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimisation of transcutaneous cardiac pacing by three-dimensional finite element modelling of the human thorax.
    Panescu D; Webster JG; Tompkins WJ; Stratbucker RA
    Med Biol Eng Comput; 1995 Nov; 33(6):769-75. PubMed ID: 8558949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A finite-element study of the effects of electrode position on the measured impedance change in impedance cardiography.
    Wang Y; Haynor DR; Kim Y
    IEEE Trans Biomed Eng; 2001 Dec; 48(12):1390-401. PubMed ID: 11759920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-dimensional finite element model of human transthoracic defibrillation: paddle placement and size.
    Camacho MA; Lehr JL; Eisenberg SR
    IEEE Trans Biomed Eng; 1995 Jun; 42(6):572-8. PubMed ID: 7790013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A finite element model for radiofrequency ablation of the myocardium.
    Shahidi AV; Savard P
    IEEE Trans Biomed Eng; 1994 Oct; 41(10):963-8. PubMed ID: 7959803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. External cardiac pacing: influence of electrode placement on pacing threshold.
    Falk RH; Ngai ST
    Crit Care Med; 1986 Nov; 14(11):931-2. PubMed ID: 3769503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical current distribution under transthoracic defibrillation and pacing electrodes.
    Papazov S; Kostov Z; Daskalov I
    J Med Eng Technol; 2002; 26(1):22-7. PubMed ID: 11924843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the current-density distribution from a tapered, gelled-pad external cardiac pacing electrode.
    Williams CR; Geddes LA; Bourland JD; Furgason ES
    Med Instrum; 1987 Dec; 21(6):329-34. PubMed ID: 3431497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of paddle placement and size on defibrillation current distribution: a three-dimensional finite element model.
    Karlon WJ; Eisenberg SR; Lehr JL
    IEEE Trans Biomed Eng; 1993 Mar; 40(3):246-55. PubMed ID: 8335328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element models of thoracic conductive anatomy: sensitivity to changes in inhomogeneity and anisotropy.
    Karlon WJ; Lehr JL; Eisenberg SR
    IEEE Trans Biomed Eng; 1994 Nov; 41(11):1010-7. PubMed ID: 8001989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of array of finite electrodes with layered biological tissue: effect of electrode size and configuration.
    Livshitz LM; Mizrahi J; Einziger PD
    IEEE Trans Neural Syst Rehabil Eng; 2001 Dec; 9(4):355-61. PubMed ID: 12018648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new approach to the determination of cardiac potential distributions: application to the analysis of electrode configurations.
    Johnston BM; Johnston PR; Kilpatrick D
    Math Biosci; 2006 Aug; 202(2):288-309. PubMed ID: 16797036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of inhomogeneities and anisotropies on electrocardiographic fields: a 3-D finite-element study.
    Klepfer RN; Johnson CR; Macleod RS
    IEEE Trans Biomed Eng; 1997 Aug; 44(8):706-19. PubMed ID: 9254984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The optimal size and placement of transdermal electrodes are critical for the efficacy of a transcutaneous pacemaker in dogs.
    Lee S; Nam SJ; Hyun C
    Vet J; 2010 Feb; 183(2):196-200. PubMed ID: 19054701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element analyses of uniform current density electrodes for radio-frequency cardiac ablation.
    Tungjitkusolmun S; Woo EJ; Cao H; Tsai JZ; Vorperian VR; Webster JG
    IEEE Trans Biomed Eng; 2000 Jan; 47(1):32-40. PubMed ID: 10646277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using compound electrodes in electrical impedance tomography.
    Hua P; Woo EJ; Webster JG; Tompkins WJ
    IEEE Trans Biomed Eng; 1993 Jan; 40(1):29-34. PubMed ID: 8468073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.