These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 7927389)

  • 1. A nonlinear finite element model of the electrode-electrolyte-skin system.
    Panescu D; Webster JG; Stratbucker RA
    IEEE Trans Biomed Eng; 1994 Jul; 41(7):681-7. PubMed ID: 7927389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A nonlinear electrical-thermal model of the skin.
    Panescu D; Webster JG; Stratbucker RA
    IEEE Trans Biomed Eng; 1994 Jul; 41(7):672-80. PubMed ID: 7927388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling current density distributions during transcutaneous cardiac pacing.
    Panescu D; Webster JG; Stratbucker RA
    IEEE Trans Biomed Eng; 1994 Jun; 41(6):549-55. PubMed ID: 7927374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Array electrode design for transcutaneous electrical stimulation: a simulation study.
    Kuhn A; Keller T; Micera S; Morari M
    Med Eng Phys; 2009 Oct; 31(8):945-51. PubMed ID: 19540788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element modeling of electrode-skin contact impedance in electrical impedance tomography.
    Hua P; Woo EJ; Webster JG; Tompkins WJ
    IEEE Trans Biomed Eng; 1993 Apr; 40(4):335-43. PubMed ID: 8375870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using compound electrodes in electrical impedance tomography.
    Hua P; Woo EJ; Webster JG; Tompkins WJ
    IEEE Trans Biomed Eng; 1993 Jan; 40(1):29-34. PubMed ID: 8468073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A finite element model to identify electrode influence on current distribution in the skin.
    Sha N; Kenney LP; Heller BW; Barker AT; Howard D; Moatamedi M
    Artif Organs; 2008 Aug; 32(8):639-43. PubMed ID: 18782136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of cardiac defibrillation by three-dimensional finite element modeling of the human thorax.
    Panescu D; Webster JG; Tompkins WJ; Stratbucker RA
    IEEE Trans Biomed Eng; 1995 Feb; 42(2):185-92. PubMed ID: 7868146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of the impedance of a thin hydrogel electrode on sensation during functional electrical stimulation.
    Sha N; Kenney LP; Heller BW; Barker AT; Howard D; Wang W
    Med Eng Phys; 2008 Jul; 30(6):739-46. PubMed ID: 17942361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of electrode size on selectivity and comfort in transcutaneous electrical stimulation of the forearm.
    Kuhn A; Keller T; Lawrence M; Morari M
    IEEE Trans Neural Syst Rehabil Eng; 2010 Jun; 18(3):255-62. PubMed ID: 20071267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A finite element model for radiofrequency ablation of the myocardium.
    Shahidi AV; Savard P
    IEEE Trans Biomed Eng; 1994 Oct; 41(10):963-8. PubMed ID: 7959803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mosaic electrical characteristics of the skin.
    Panescu D; Cohen KP; Webster JG; Stratbucker RA
    IEEE Trans Biomed Eng; 1993 May; 40(5):434-9. PubMed ID: 8225332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid assessment of electrode characteristics for impedance imaging.
    Newell JC; Isaacson D; Gisser DG
    IEEE Trans Biomed Eng; 1990 Jul; 37(7):735-8. PubMed ID: 2394462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimisation of transcutaneous cardiac pacing by three-dimensional finite element modelling of the human thorax.
    Panescu D; Webster JG; Tompkins WJ; Stratbucker RA
    Med Biol Eng Comput; 1995 Nov; 33(6):769-75. PubMed ID: 8558949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-element modeling of needle electrodes in tissue from the perspective of frequent model computation.
    Sel D; Mazeres S; Teissie J; Miklavcic D
    IEEE Trans Biomed Eng; 2003 Nov; 50(11):1221-32. PubMed ID: 14619992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel hydrogel-based preparation-free EEG electrode.
    Alba NA; Sclabassi RJ; Sun M; Cui XT
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):415-23. PubMed ID: 20423811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impedance analysis of bio-fuel cell electrodes.
    Ouitrakul S; Sriyudthsak M; Charojrochkul S; Kakizono T
    Biosens Bioelectron; 2007 Dec; 23(5):721-7. PubMed ID: 17897820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational modelling of blood-flow-induced changes in blood electrical conductivity and its contribution to the impedance cardiogram.
    Trakic A; Akhand M; Wang H; Mason D; Liu F; Wilson S; Crozier S
    Physiol Meas; 2010 Jan; 31(1):13-33. PubMed ID: 19940342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element analyses of uniform current density electrodes for radio-frequency cardiac ablation.
    Tungjitkusolmun S; Woo EJ; Cao H; Tsai JZ; Vorperian VR; Webster JG
    IEEE Trans Biomed Eng; 2000 Jan; 47(1):32-40. PubMed ID: 10646277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3-D hybrid finite element model to characterize the electrical behavior of cutaneous tissues.
    Hartinger AE; Guardo R; Kokta V; Gagnon H
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):780-9. PubMed ID: 19932994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.