These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7927880)

  • 1. Sulfonated aluminium phthalocyanines as sensitizers for photochemotherapy. Effects of small light doses on localization, dye fluorescence and photosensitivity in V79 cells.
    Moan J; Berg K; Anholt H; Madslien K
    Int J Cancer; 1994 Sep; 58(6):865-70. PubMed ID: 7927880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser line-scanning confocal fluorescence imaging of the photodynamic action of aluminum and zinc phthalocyanines in V79-4 Chinese hamster fibroblasts.
    Scully AD; Ostler RB; MacRobert AJ; Parker AW; de Lara C; O'Neill P; Phillips D
    Photochem Photobiol; 1998 Aug; 68(2):199-204. PubMed ID: 9723211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action spectra of phthalocyanines with respect to photosensitization of cells.
    Moan J; Berg K; Bommer JC; Western A
    Photochem Photobiol; 1992 Aug; 56(2):171-5. PubMed ID: 1502260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic fluorescence changes during photodynamic therapy in vivo and in vitro of hydrophilic A1(III) phthalocyanine tetrasulphonate and lipophilic Zn(II) phthalocyanine administered in liposomes.
    Rück A; Beck G; Bachor R; Akgün N; Gschwend MH; Steiner R
    J Photochem Photobiol B; 1996 Nov; 36(2):127-33. PubMed ID: 9002249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysosomes as photochemical targets.
    Berg K; Moan J
    Int J Cancer; 1994 Dec; 59(6):814-22. PubMed ID: 7989124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of sulfonated aluminum phthalocyanines for use in photochemotherapy. A study on the relative efficiencies of photoinactivation.
    Berg K; Bommer JC; Moan J
    Photochem Photobiol; 1989 May; 49(5):587-94. PubMed ID: 2755994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acridine orange-mediated photodamage to cultured cells.
    Zdolsek JM
    APMIS; 1993 Feb; 101(2):127-32. PubMed ID: 8387800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photodynamic properties of amphiphilic derivatives of aluminum tetrasulfophthalocyanine.
    Allen CM; Langlois R; Sharman WM; La Madeleine C; Van Lier JE
    Photochem Photobiol; 2002 Aug; 76(2):208-16. PubMed ID: 12194219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of metabolic alterations on the density and the contents of cathepsins B, H and L of lysosomes in rat macrophages.
    Muno D; Sutoh N; Watanabe T; Uchiyama Y; Kominami E
    Eur J Biochem; 1990 Jul; 191(1):91-8. PubMed ID: 2379507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and cellular studies of nonaggregated water-soluble phthalocyanines.
    Liu W; Jensen TJ; Fronczek FR; Hammer RP; Smith KM; Vicente MG
    J Med Chem; 2005 Feb; 48(4):1033-41. PubMed ID: 15715471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosensitization of lymphoblastoid cells with phthalocyanines at different saturating incubation times.
    Gomes ER; Cruz T; Lopes CF; Carvalho AP; Duarte CB
    Cell Biol Toxicol; 1999; 15(4):249-60. PubMed ID: 10696824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acridine orange used for photodynamic therapy accumulates in malignant musculoskeletal tumors depending on pH gradient.
    Matsubara T; Kusuzaki K; Matsumine A; Shintani K; Satonaka H; Uchida A
    Anticancer Res; 2006; 26(1A):187-93. PubMed ID: 16475697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of lysosomal cysteine proteinases in microglia: flow cytometric measurement and histochemical localization of cathepsin B and L.
    Banati RB; Rothe G; Valet G; Kreutzberg GW
    Glia; 1993 Feb; 7(2):183-91. PubMed ID: 8432559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysosomes, a key target of hydrophobic photosensitizers proposed for photochemotherapeutic applications.
    Gèze M; Morlière P; Mazière JC; Smith KM; Santus R
    J Photochem Photobiol B; 1993 Sep; 20(1):23-35. PubMed ID: 8229466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-photodynamic activity relationships of a series of 4-substituted zinc phthalocyanines.
    Margaron P; Grégoire MJ; Scasnár V; Ali H; van Lier JE
    Photochem Photobiol; 1996 Feb; 63(2):217-23. PubMed ID: 8657735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of distribution of sulphonated aluminium phthalocyanines with their photodynamic effect in tumour and skin of mice bearing CaD2 mammary carcinoma.
    Peng Q; Moan J
    Br J Cancer; 1995 Sep; 72(3):565-74. PubMed ID: 7669563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of sulfonated aluminum phthalocyanines for use in photochemotherapy. Cellular uptake studies.
    Berg K; Bommer JC; Moan J
    Cancer Lett; 1989 Jan; 44(1):7-15. PubMed ID: 2735971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of calcium in photodynamically induced cell damage of human fibroblasts.
    Hubmer A; Hermann A; Uberriegler K; Krammer B
    Photochem Photobiol; 1996 Jul; 64(1):211-5. PubMed ID: 8787016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preliminary studies of phthalocyanine sensitizers incorporated into human leukemia cells from two cell-lines.
    Wiktorowicz K; Cofta J; Dudkowiak A; Waszkowiak A; Frackowiak D
    Acta Biochim Pol; 2004; 51(3):703-10. PubMed ID: 15448732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Location of P-II and AlPCS4 in human tumor LOX in vitro and in vivo by means of computer-enhanced video fluorescence microscopy.
    Peng Q; Moan J; Farrants GW; Danielsen HE; Rimington C
    Cancer Lett; 1991 Jun; 58(1-2):37-47. PubMed ID: 1828713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.