BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7927880)

  • 1. Sulfonated aluminium phthalocyanines as sensitizers for photochemotherapy. Effects of small light doses on localization, dye fluorescence and photosensitivity in V79 cells.
    Moan J; Berg K; Anholt H; Madslien K
    Int J Cancer; 1994 Sep; 58(6):865-70. PubMed ID: 7927880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser line-scanning confocal fluorescence imaging of the photodynamic action of aluminum and zinc phthalocyanines in V79-4 Chinese hamster fibroblasts.
    Scully AD; Ostler RB; MacRobert AJ; Parker AW; de Lara C; O'Neill P; Phillips D
    Photochem Photobiol; 1998 Aug; 68(2):199-204. PubMed ID: 9723211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action spectra of phthalocyanines with respect to photosensitization of cells.
    Moan J; Berg K; Bommer JC; Western A
    Photochem Photobiol; 1992 Aug; 56(2):171-5. PubMed ID: 1502260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic fluorescence changes during photodynamic therapy in vivo and in vitro of hydrophilic A1(III) phthalocyanine tetrasulphonate and lipophilic Zn(II) phthalocyanine administered in liposomes.
    Rück A; Beck G; Bachor R; Akgün N; Gschwend MH; Steiner R
    J Photochem Photobiol B; 1996 Nov; 36(2):127-33. PubMed ID: 9002249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysosomes as photochemical targets.
    Berg K; Moan J
    Int J Cancer; 1994 Dec; 59(6):814-22. PubMed ID: 7989124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of sulfonated aluminum phthalocyanines for use in photochemotherapy. A study on the relative efficiencies of photoinactivation.
    Berg K; Bommer JC; Moan J
    Photochem Photobiol; 1989 May; 49(5):587-94. PubMed ID: 2755994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acridine orange-mediated photodamage to cultured cells.
    Zdolsek JM
    APMIS; 1993 Feb; 101(2):127-32. PubMed ID: 8387800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photodynamic properties of amphiphilic derivatives of aluminum tetrasulfophthalocyanine.
    Allen CM; Langlois R; Sharman WM; La Madeleine C; Van Lier JE
    Photochem Photobiol; 2002 Aug; 76(2):208-16. PubMed ID: 12194219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of metabolic alterations on the density and the contents of cathepsins B, H and L of lysosomes in rat macrophages.
    Muno D; Sutoh N; Watanabe T; Uchiyama Y; Kominami E
    Eur J Biochem; 1990 Jul; 191(1):91-8. PubMed ID: 2379507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and cellular studies of nonaggregated water-soluble phthalocyanines.
    Liu W; Jensen TJ; Fronczek FR; Hammer RP; Smith KM; Vicente MG
    J Med Chem; 2005 Feb; 48(4):1033-41. PubMed ID: 15715471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosensitization of lymphoblastoid cells with phthalocyanines at different saturating incubation times.
    Gomes ER; Cruz T; Lopes CF; Carvalho AP; Duarte CB
    Cell Biol Toxicol; 1999; 15(4):249-60. PubMed ID: 10696824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acridine orange used for photodynamic therapy accumulates in malignant musculoskeletal tumors depending on pH gradient.
    Matsubara T; Kusuzaki K; Matsumine A; Shintani K; Satonaka H; Uchida A
    Anticancer Res; 2006; 26(1A):187-93. PubMed ID: 16475697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of lysosomal cysteine proteinases in microglia: flow cytometric measurement and histochemical localization of cathepsin B and L.
    Banati RB; Rothe G; Valet G; Kreutzberg GW
    Glia; 1993 Feb; 7(2):183-91. PubMed ID: 8432559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary studies of phthalocyanine sensitizers incorporated into human leukemia cells from two cell-lines.
    Wiktorowicz K; Cofta J; Dudkowiak A; Waszkowiak A; Frackowiak D
    Acta Biochim Pol; 2004; 51(3):703-10. PubMed ID: 15448732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysosomes, a key target of hydrophobic photosensitizers proposed for photochemotherapeutic applications.
    Gèze M; Morlière P; Mazière JC; Smith KM; Santus R
    J Photochem Photobiol B; 1993 Sep; 20(1):23-35. PubMed ID: 8229466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-photodynamic activity relationships of a series of 4-substituted zinc phthalocyanines.
    Margaron P; Grégoire MJ; Scasnár V; Ali H; van Lier JE
    Photochem Photobiol; 1996 Feb; 63(2):217-23. PubMed ID: 8657735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation of distribution of sulphonated aluminium phthalocyanines with their photodynamic effect in tumour and skin of mice bearing CaD2 mammary carcinoma.
    Peng Q; Moan J
    Br J Cancer; 1995 Sep; 72(3):565-74. PubMed ID: 7669563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of sulfonated aluminum phthalocyanines for use in photochemotherapy. Cellular uptake studies.
    Berg K; Bommer JC; Moan J
    Cancer Lett; 1989 Jan; 44(1):7-15. PubMed ID: 2735971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of calcium in photodynamically induced cell damage of human fibroblasts.
    Hubmer A; Hermann A; Uberriegler K; Krammer B
    Photochem Photobiol; 1996 Jul; 64(1):211-5. PubMed ID: 8787016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Location of P-II and AlPCS4 in human tumor LOX in vitro and in vivo by means of computer-enhanced video fluorescence microscopy.
    Peng Q; Moan J; Farrants GW; Danielsen HE; Rimington C
    Cancer Lett; 1991 Jun; 58(1-2):37-47. PubMed ID: 1828713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.