These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7928902)

  • 1. Reflex modulation of airflow dynamics through the upper airway.
    Seelagy MM; Schwartz AR; Russ DB; King ED; Wise RA; Smith PL
    J Appl Physiol (1985); 1994 Jun; 76(6):2692-700. PubMed ID: 7928902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracheal and neck position influence upper airway airflow dynamics by altering airway length.
    Thut DC; Schwartz AR; Roach D; Wise RA; Permutt S; Smith PL
    J Appl Physiol (1985); 1993 Nov; 75(5):2084-90. PubMed ID: 8307863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of maximal inspiratory airflow by neuromuscular activity: effect of CO2.
    Schwartz AR; Thut DC; Brower RG; Gauda EB; Roach D; Permutt S; Smith PL
    J Appl Physiol (1985); 1993 Apr; 74(4):1597-605. PubMed ID: 8514673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of electrical stimulation of the hypoglossal nerve on airflow mechanics in the isolated upper airway.
    Schwartz AR; Thut DC; Russ B; Seelagy M; Yuan X; Brower RG; Permutt S; Wise RA; Smith PL
    Am Rev Respir Dis; 1993 May; 147(5):1144-50. PubMed ID: 8484623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of tracheal and tongue displacement on upper airway airflow dynamics.
    Rowley JA; Permutt S; Willey S; Smith PL; Schwartz AR
    J Appl Physiol (1985); 1996 Jun; 80(6):2171-8. PubMed ID: 8806927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromuscular activity and upper airway collapsibility. Mechanisms of action in the decerebrate cat.
    Rowley JA; Williams BC; Smith PL; Schwartz AR
    Am J Respir Crit Care Med; 1997 Aug; 156(2 Pt 1):515-21. PubMed ID: 9279233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of co-activation of tongue protrudor and retractor muscles on tongue movements and pharyngeal airflow mechanics in the rat.
    Fuller DD; Williams JS; Janssen PL; Fregosi RF
    J Physiol; 1999 Sep; 519 Pt 2(Pt 2):601-13. PubMed ID: 10457075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reflex respiratory response to changes in upper airway pressure in the anaesthetized rat.
    Ryan S; McNicholas WT; O'Regan RG; Nolan P
    J Physiol; 2001 Nov; 537(Pt 1):251-65. PubMed ID: 11711578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significance of pulmonary vagal afferents for respiratory muscle activity in the cat.
    Marek W; Muckenhoff K; Prabhakar NR
    J Physiol Pharmacol; 2008 Dec; 59 Suppl 6():407-20. PubMed ID: 19218665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of alae nasi activation on maximal nasal inspiratory airflow in humans.
    Gold AR; Smith PL; Schwartz AR
    J Appl Physiol (1985); 1998 Jun; 84(6):2115-22. PubMed ID: 9609807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of intralaryngeal CO2 on the response of laryngeal afferents to upper airway negative pressure.
    Ghosh TK; Mathew OP
    J Appl Physiol (1985); 1994 Jun; 76(6):2720-5. PubMed ID: 7928906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Static and dynamic upper airway obstruction in sleep apnea: role of the breathing gas properties.
    Farré R; Rigau J; Montserrat JM; Buscemi L; Ballester E; Navajas D
    Am J Respir Crit Care Med; 2003 Sep; 168(6):659-63. PubMed ID: 12869358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemoreceptor and vagal influences on genioglossal muscle responses to inspiratory resistive load.
    Aleksandrova NP
    J Physiol Pharmacol; 2004 Sep; 55 Suppl 3():7-14. PubMed ID: 15611588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouth-opening increases upper-airway collapsibility without changing resistance during midazolam sedation.
    Ayuse T; Inazawa T; Kurata S; Okayasu I; Sakamoto E; Oi K; Schneider H; Schwartz AR
    J Dent Res; 2004 Sep; 83(9):718-22. PubMed ID: 15329379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of upper airway occlusion in sleeping individuals with subatmospheric nasal pressure.
    Schwartz AR; Smith PL; Wise RA; Gold AR; Permutt S
    J Appl Physiol (1985); 1988 Feb; 64(2):535-42. PubMed ID: 3372411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging increases upper airway collapsibility in Fischer 344 rats.
    Ray AD; Ogasa T; Magalang UJ; Krasney JA; Farkas GA
    J Appl Physiol (1985); 2008 Nov; 105(5):1471-6. PubMed ID: 18756010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similarities in reflex control of laryngeal and cardiac vagal motor neurones.
    Paton JF; Nolan PJ
    Respir Physiol; 2000 Feb; 119(2-3):101-11. PubMed ID: 10722853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of vascular tone in the control of upper airway collapsibility.
    Wasicko MJ; Hutt DA; Parisi RA; Neubauer JA; Mezrich R; Edelman NH
    Am Rev Respir Dis; 1990 Jun; 141(6):1569-77. PubMed ID: 2350100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of positive nasal pressure on upper airway pressure-flow relationships.
    Schwartz AR; Smith PL; Wise RA; Bankman I; Permutt S
    J Appl Physiol (1985); 1989 Apr; 66(4):1626-34. PubMed ID: 2659574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of selective nerve stimulation on upper airway airflow mechanics.
    Eisele DW; Schwartz AR; Hari A; Thut DC; Smith PL
    Arch Otolaryngol Head Neck Surg; 1995 Dec; 121(12):1361-4. PubMed ID: 7488364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.