These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7928949)

  • 1. Glucose upshift of carbon-starved marine Vibrio sp. strain S14 causes amino acid starvation and induction of the stringent response.
    Flärdh K; Kjelleberg S
    J Bacteriol; 1994 Oct; 176(19):5897-903. PubMed ID: 7928949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stringent control during carbon starvation of marine Vibrio sp. strain S14: molecular cloning, nucleotide sequence, and deletion of the relA gene.
    Flärdh K; Axberg T; Albertson NH; Kjelleberg S
    J Bacteriol; 1994 Oct; 176(19):5949-57. PubMed ID: 7928955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global analysis of the carbon starvation response of a marine Vibrio species with disruptions in genes homologous to relA and spoT.
    Ostling J; Holmquist L; Kjelleberg S
    J Bacteriol; 1996 Aug; 178(16):4901-8. PubMed ID: 8759854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of immediate upshift (Iup) proteins during recovery of marine Vibrio sp. strain S14 subjected to long-term carbon starvation.
    Marouga R; Kjelleberg S
    J Bacteriol; 1996 Feb; 178(3):817-22. PubMed ID: 8550518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosomes exist in large excess over the apparent demand for protein synthesis during carbon starvation in marine Vibrio sp. strain CCUG 15956.
    Flärdh K; Cohen PS; Kjelleberg S
    J Bacteriol; 1992 Nov; 174(21):6780-8. PubMed ID: 1383195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses to multiple-nutrient starvation in marine Vibrio sp. strain CCUG 15956.
    Nyström T; Flärdh K; Kjelleberg S
    J Bacteriol; 1990 Dec; 172(12):7085-97. PubMed ID: 1701428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of a carbon starvation regulatory mutant in a marine Vibrio strain.
    Ostling J; Flärdh K; Kjelleberg S
    J Bacteriol; 1995 Dec; 177(23):6978-82. PubMed ID: 7592494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular signal molecule(s) involved in the carbon starvation response of marine Vibrio sp. strain S14.
    Srinivasan S; Ostling J; Charlton T; de Nys R; Takayama K; Kjelleberg S
    J Bacteriol; 1998 Jan; 180(2):201-9. PubMed ID: 9440506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survival, stress resistance, and alterations in protein expression in the marine vibrio sp. strain S14 during starvation for different individual nutrients.
    Nyström T; Olsson RM; Kjelleberg S
    Appl Environ Microbiol; 1992 Jan; 58(1):55-65. PubMed ID: 1371661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological analysis of the stringent response elicited in an extreme thermophilic bacterium, Thermus thermophilus.
    Kasai K; Nishizawa T; Takahashi K; Hosaka T; Aoki H; Ochi K
    J Bacteriol; 2006 Oct; 188(20):7111-22. PubMed ID: 17015650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization of vibrio cholerae DeltarelA DeltaspoT double mutants.
    Das B; Bhadra RK
    Arch Microbiol; 2008 Mar; 189(3):227-38. PubMed ID: 17968531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of guanosine tetraphosphate in gene expression and the survival of glucose or seryl-tRNA starved cells of Escherichia coli K12.
    Nystöm T
    Mol Gen Genet; 1994 Nov; 245(3):355-62. PubMed ID: 7529354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemotactic Responses of Marine Vibrio sp. Strain S14 (CCUG 15956) to Low-Molecular-Weight Substances under Starvation and Recovery Conditions.
    Malmcrona-Friberg K; Goodman A; Kjelleberg S
    Appl Environ Microbiol; 1990 Dec; 56(12):3699-704. PubMed ID: 16348373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High concentrations of ppGpp decrease the RNA chain growth rate. Implications for protein synthesis and translational fidelity during amino acid starvation in Escherichia coli.
    Sørensen MA; Jensen KF; Pedersen S
    J Mol Biol; 1994 Feb; 236(2):441-54. PubMed ID: 7508988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the stringent and relaxed responses of Streptococcus equisimilis.
    Mechold U; Malke H
    J Bacteriol; 1997 Apr; 179(8):2658-67. PubMed ID: 9098065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delayed-relaxed response explained by hyperactivation of RelE.
    Christensen SK; Gerdes K
    Mol Microbiol; 2004 Jul; 53(2):587-97. PubMed ID: 15228536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase.
    Brockmann-Gretza O; Kalinowski J
    BMC Genomics; 2006 Sep; 7():230. PubMed ID: 16961923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stringency and relaxation among the halobacteria.
    Cimmino C; Scoarughi GL; Donini P
    J Bacteriol; 1993 Oct; 175(20):6659-62. PubMed ID: 7691798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guanosine 3',5'-bispyrophosphate coordinates global gene expression during glucose-lactose diauxie in Escherichia coli.
    Traxler MF; Chang DE; Conway T
    Proc Natl Acad Sci U S A; 2006 Feb; 103(7):2374-9. PubMed ID: 16467149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein turnover in exponential and stationary phase Vibrio cells.
    Car NB; Woods DR
    FEMS Microbiol Lett; 1991 Apr; 63(2-3):297-301. PubMed ID: 2060764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.