These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 7928969)
1. Substrate specificity of catechol 2,3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida and its relationship to cell growth. Cerdan P; Wasserfallen A; Rekik M; Timmis KN; Harayama S J Bacteriol; 1994 Oct; 176(19):6074-81. PubMed ID: 7928969 [TBL] [Abstract][Full Text] [Related]
2. Substrate specificity differences between two catechol 2,3-dioxygenases encoded by the TOL and NAH plasmids from Pseudomonas putida. Cerdan P; Rekik M; Harayama S Eur J Biochem; 1995 Apr; 229(1):113-8. PubMed ID: 7744021 [TBL] [Abstract][Full Text] [Related]
3. Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. Mars AE; Kingma J; Kaschabek SR; Reineke W; Janssen DB J Bacteriol; 1999 Feb; 181(4):1309-18. PubMed ID: 9973359 [TBL] [Abstract][Full Text] [Related]
4. Construction of chimeric catechol 2,3-dioxygenase exhibiting improved activity against the suicide inhibitor 4-methylcatechol. Okuta A; Ohnishi K; Harayama S Appl Environ Microbiol; 2004 Mar; 70(3):1804-10. PubMed ID: 15006807 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Klecka GM; Gibson DT Appl Environ Microbiol; 1981 May; 41(5):1159-65. PubMed ID: 7259155 [TBL] [Abstract][Full Text] [Related]
6. In vivo reactivation of catechol 2,3-dioxygenase mediated by a chloroplast-type ferredoxin: a bacterial strategy to expand the substrate specificity of aromatic degradative pathways. Polissi A; Harayama S EMBO J; 1993 Aug; 12(8):3339-47. PubMed ID: 8344270 [TBL] [Abstract][Full Text] [Related]
7. Functional and structural relationship of various extradiol aromatic ring-cleavage dioxygenases of Pseudomonas origin. Hirose J; Kimura N; Suyama A; Kobayashi A; Hayashida S; Furukawa K FEMS Microbiol Lett; 1994 May; 118(3):273-7. PubMed ID: 8020752 [TBL] [Abstract][Full Text] [Related]
8. Purification, characterization, and gene analysis of catechol 2,3-dioxygenase from the aniline-assimilating bacterium Pseudomonas species AW-2. Murakami S; Nakanishi Y; Kodama N; Takenaka S; Shinke R; Aoki K Biosci Biotechnol Biochem; 1998 Apr; 62(4):747-52. PubMed ID: 9614705 [TBL] [Abstract][Full Text] [Related]
9. Reactions of 3-ethylcatechol and 3-(methylthio)catechol with catechol dioxygenases. Pascal RA; Huang DS Arch Biochem Biophys; 1986 Jul; 248(1):130-7. PubMed ID: 3015028 [TBL] [Abstract][Full Text] [Related]
10. Characterization of phe B gene encoding catechol 2,3-dioxygenase. Nishihara T; Yamada T; Takano K; Osada S; Nishikawa J; Imagawa M Lett Appl Microbiol; 1994 Oct; 19(4):181-3. PubMed ID: 7765392 [TBL] [Abstract][Full Text] [Related]
11. Ferredoxin-mediated reactivation of the chlorocatechol 2,3-dioxygenase from Pseudomonas putida GJ31. Tropel D; Meyer C; Armengaud J; Jouanneau Y Arch Microbiol; 2002 Apr; 177(4):345-51. PubMed ID: 11889489 [TBL] [Abstract][Full Text] [Related]
12. Quantitative structure/activity relationship for the rate of conversion of C4-substituted catechols by catechol-1,2-dioxygenase from Pseudomonas putida (arvilla) C1. Ridder L; Briganti F; Boersma MG; Boeren S; Vis EH; Scozzafava A; Veeger C; Rietjens IM Eur J Biochem; 1998 Oct; 257(1):92-100. PubMed ID: 9799107 [TBL] [Abstract][Full Text] [Related]
13. Isolation and partial characterization of an extradiol non-haem iron dioxygenase which preferentially cleaves 3-methylcatechol. Wallis MG; Chapman SK Biochem J; 1990 Mar; 266(2):605-9. PubMed ID: 2317207 [TBL] [Abstract][Full Text] [Related]
14. Catalytic properties of the 3-chlorocatechol-oxidizing 2, 3-dihydroxybiphenyl 1,2-dioxygenase from Sphingomonas sp. strain BN6. Riegert U; Heiss G; Kuhm AE; Müller C; Contzen M; Knackmuss HJ; Stolz A J Bacteriol; 1999 Aug; 181(16):4812-7. PubMed ID: 10438749 [TBL] [Abstract][Full Text] [Related]
15. A novel -2Fe-2S- ferredoxin from Pseudomonas putida mt2 promotes the reductive reactivation of catechol 2,3-dioxygenase. Hugo N; Armengaud J; Gaillard J; Timmis KN; Jouanneau Y J Biol Chem; 1998 Apr; 273(16):9622-9. PubMed ID: 9545294 [TBL] [Abstract][Full Text] [Related]
16. Tetrameric structure and cellular location of catechol 2,3-dioxygenase. Winkler J; Eltis LD; Dwyer DF; Rohde M Arch Microbiol; 1995 Jan; 163(1):65-9. PubMed ID: 7710322 [TBL] [Abstract][Full Text] [Related]
17. Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene. Mars AE; Kasberg T; Kaschabek SR; van Agteren MH; Janssen DB; Reineke W J Bacteriol; 1997 Jul; 179(14):4530-7. PubMed ID: 9226262 [TBL] [Abstract][Full Text] [Related]
18. Structure of catechol 2,3-dioxygenase gene encoded in chromosomal DNA of Pseudomonas putida KF715. Lee J; Oh J; Min KR; Kim CK; Min KH; Lee KS; Kim YC; Lim JY; Kim Y Biochem Biophys Res Commun; 1996 Jul; 224(3):831-6. PubMed ID: 8713131 [TBL] [Abstract][Full Text] [Related]
19. Construction of hybrid xylE genes between the two duplicate homologous genes from TOL plasmid pWW53: comparison of the kinetic properties of the gene products. Williams PA; Assinder SJ; Shaw LE J Gen Microbiol; 1990 Aug; 136(8):1583-9. PubMed ID: 2262792 [TBL] [Abstract][Full Text] [Related]
20. TOL plasmid pWW0 in constructed halobenzoate-degrading Pseudomonas strains: prevention of meta pathway. Reineke W; Jeenes DJ; Williams PA; Knackmuss HJ J Bacteriol; 1982 Apr; 150(1):195-201. PubMed ID: 7061393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]