These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 7929198)

  • 41. A tyrosine-derived free radical in apogalactose oxidase.
    Whittaker MM; Whittaker JW
    J Biol Chem; 1990 Jun; 265(17):9610-3. PubMed ID: 2161837
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Catalytic galactose oxidase models: biomimetic Cu(II)-phenoxyl-radical reactivity.
    Wang Y; DuBois JL; Hedman B; Hodgson KO; Stack TD
    Science; 1998 Jan; 279(5350):537-40. PubMed ID: 9438841
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family.
    Yin DT; Urresti S; Lafond M; Johnston EM; Derikvand F; Ciano L; Berrin JG; Henrissat B; Walton PH; Davies GJ; Brumer H
    Nat Commun; 2015 Dec; 6():10197. PubMed ID: 26680532
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Resonance Raman evidence for tyrosine involvement in the radical site of galactose oxidase.
    Whittaker MM; DeVito VL; Asher SA; Whittaker JW
    J Biol Chem; 1989 May; 264(13):7104-6. PubMed ID: 2708358
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Galactose oxidase models: solution chemistry, and phenoxyl radical generation mediated by the copper status.
    Michel F; Thomas F; Hamman S; Saint-Aman E; Bucher C; Pierre JL
    Chemistry; 2004 Sep; 10(17):4115-25. PubMed ID: 15352095
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Insights into the nature of the hydrogen bonding of *Tyr272 in apo-galactose oxidase.
    Benisvy L; Hammond D; Parker DJ; Davies ES; Garner CD; McMaster J; Wilson C; Neese F; Bothe E; Bittl R; Teutloff C
    J Inorg Biochem; 2007 Nov; 101(11-12):1859-64. PubMed ID: 17826837
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis, X-ray crystallography, spectroscopic characterization and spectroscopic/electrochemical evidence of formation of phenoxy free radical in active center analogs of galactose oxidase - [Cu(Salgly)H₂O] and [Cu(Salphenylalanine)H₂O].
    Das B; Medhi OK
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 104():352-7. PubMed ID: 23274262
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Systematic development of computational models for the catalytic site in galactose oxidase: impact of outer-sphere residues on the geometric and electronic structures.
    Rokhsana D; Dooley DM; Szilagyi RK
    J Biol Inorg Chem; 2008 Mar; 13(3):371-83. PubMed ID: 18057969
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Targeted oxidase reactivity with a new redox-active ligand incorporating N2O2 donor atoms. Complexes of Cu(II), Ni(II), Pd(II), Fe(III), and V(V).
    Mukherjee C; Weyhermüller T; Bothe E; Chaudhuri P
    Inorg Chem; 2008 Dec; 47(24):11620-32. PubMed ID: 18998669
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Expression and stabilization of galactose oxidase in Escherichia coli by directed evolution.
    Sun L; Petrounia IP; Yagasaki M; Bandara G; Arnold FH
    Protein Eng; 2001 Sep; 14(9):699-704. PubMed ID: 11707617
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Streptomyces coelicolor oxidase (SCO2837p): a new free radical metalloenzyme secreted by Streptomyces coelicolor A3(2).
    Whittaker MM; Whittaker JW
    Arch Biochem Biophys; 2006 Aug; 452(2):108-18. PubMed ID: 16884677
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of ortho-SR groups on O-H bond strength and H-atom donating ability of phenols: a possible role for the Tyr-Cys link in galactose oxidase active site?
    Amorati R; Catarzi F; Menichetti S; Pedulli GF; Viglianisi C
    J Am Chem Soc; 2008 Jan; 130(1):237-44. PubMed ID: 18072772
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A comparative study of galactose oxidase and active site analogs based on QM/MM Car-Parrinello simulations.
    Rothlisberger U; Carloni P; Doclo K; Parrinello M
    J Biol Inorg Chem; 2000 Apr; 5(2):236-50. PubMed ID: 10819469
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Roles of active site tryptophans in substrate binding and catalysis by alpha-1,3 galactosyltransferase.
    Zhang Y; Deshpande A; Xie Z; Natesh R; Acharya KR; Brew K
    Glycobiology; 2004 Dec; 14(12):1295-302. PubMed ID: 15229192
    [TBL] [Abstract][Full Text] [Related]  

  • 55. X-ray studies of quinoproteins.
    Mathews FS
    Methods Enzymol; 1995; 258():191-216. PubMed ID: 8524150
    [No Abstract]   [Full Text] [Related]  

  • 56. The Asp-His-Fe triad of cytochrome c peroxidase controls the reduction potential, electronic structure, and coupling of the tryptophan free radical to the heme.
    Goodin DB; McRee DE
    Biochemistry; 1993 Apr; 32(13):3313-24. PubMed ID: 8384877
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Expression, purification, and characterization of galactose oxidase of Fusarium sambucinum in E. coli.
    Paukner R; Staudigl P; Choosri W; Haltrich D; Leitner C
    Protein Expr Purif; 2015 Apr; 108():73-79. PubMed ID: 25543085
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Snapshots of a metamorphosing Cu(II) ground state in a galactose oxidase-inspired complex.
    Pratt RC; Mirica LM; Stack TD
    Inorg Chem; 2004 Dec; 43(25):8030-9. PubMed ID: 15578842
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Catalytic reaction profile for alcohol oxidation by galactose oxidase.
    Whittaker MM; Whittaker JW
    Biochemistry; 2001 Jun; 40(24):7140-8. PubMed ID: 11401560
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stereoselective hydrogen abstraction by galactose oxidase.
    Minasian SG; Whittaker MM; Whittaker JW
    Biochemistry; 2004 Nov; 43(43):13683-93. PubMed ID: 15504031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.