These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 7929241)
1. Modulation of the activity of mitochondrial aspartate aminotransferase H352C by the redox state of the engineered interdomain disulfide bond. Pan P; Jakob CA; Sandmeier E; Christen P; Gehring H J Biol Chem; 1994 Oct; 269(41):25432-6. PubMed ID: 7929241 [TBL] [Abstract][Full Text] [Related]
2. Roles for cysteine residues in the regulatory CXXC motif of human mitochondrial branched chain aminotransferase enzyme. Conway ME; Poole LB; Hutson SM Biochemistry; 2004 Jun; 43(23):7356-64. PubMed ID: 15182179 [TBL] [Abstract][Full Text] [Related]
3. Role of Asp222 in the catalytic mechanism of Escherichia coli aspartate aminotransferase: the amino acid residue which enhances the function of the enzyme-bound coenzyme pyridoxal 5'-phosphate. Yano T; Kuramitsu S; Tanase S; Morino Y; Kagamiyama H Biochemistry; 1992 Jun; 31(25):5878-87. PubMed ID: 1610831 [TBL] [Abstract][Full Text] [Related]
4. Mutant aspartate aminotransferase (K258H) without pyridoxal-5'-phosphate-binding lysine residue. Structural and catalytic properties. Ziak M; Jäger J; Malashkevich VN; Gehring H; Jaussi R; Jansonius JN; Christen P Eur J Biochem; 1993 Feb; 211(3):475-84. PubMed ID: 8436109 [TBL] [Abstract][Full Text] [Related]
5. Substitution of apolar residues in the active site of aspartate aminotransferase by histidine. Effects on reaction and substrate specificity. Vacca RA; Christen P; Malashkevich VN; Jansonius JN; Sandmeier E Eur J Biochem; 1995 Jan; 227(1-2):481-7. PubMed ID: 7851426 [TBL] [Abstract][Full Text] [Related]
6. Shift in pH-rate profile and enhanced discrimination between dicarboxylic and aromatic substrates in mitochondrial aspartate aminotransferase Y70H. Pan P; Jaussi R; Gehring H; Giannattasio S; Christen P Biochemistry; 1994 Mar; 33(10):2757-60. PubMed ID: 8130187 [TBL] [Abstract][Full Text] [Related]
7. Kinetic properties and thermal stabilities of mutant forms of mitochondrial aspartate aminotransferase. Azzariti A; Vacca RA; Giannattasio S; Merafina RS; Marra E; Doonan S Biochim Biophys Acta; 1998 Jul; 1386(1):29-38. PubMed ID: 9675237 [TBL] [Abstract][Full Text] [Related]
8. Structure and mechanism of a cysteine sulfinate desulfinase engineered on the aspartate aminotransferase scaffold. Fernandez FJ; de Vries D; Peña-Soler E; Coll M; Christen P; Gehring H; Vega MC Biochim Biophys Acta; 2012 Feb; 1824(2):339-49. PubMed ID: 22138634 [TBL] [Abstract][Full Text] [Related]
9. Replacement of an interdomain residue Val39 of Escherichia coli aspartate aminotransferase affects the catalytic competence without altering the substrate specificity of the enzyme. Hayashi H; Kuramitsu S; Kagamiyama H J Biochem; 1991 May; 109(5):699-704. PubMed ID: 1917893 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis. Waksman G; Krishna TS; Williams CH; Kuriyan J J Mol Biol; 1994 Feb; 236(3):800-16. PubMed ID: 8114095 [TBL] [Abstract][Full Text] [Related]
11. Control of enzyme activity by an engineered disulfide bond. Matsumura M; Matthews BW Science; 1989 Feb; 243(4892):792-4. PubMed ID: 2916125 [TBL] [Abstract][Full Text] [Related]
12. Phospholipase A2 engineering. The roles of disulfide bonds in structure, conformational stability, and catalytic function. Zhu H; Dupureur CM; Zhang X; Tsai MD Biochemistry; 1995 Nov; 34(46):15307-14. PubMed ID: 7578147 [TBL] [Abstract][Full Text] [Related]
13. Importance of cysteine residues for the stability and catalytic activity of human pancreatic beta cell glucokinase. Tiedge M; Richter T; Lenzen S Arch Biochem Biophys; 2000 Mar; 375(2):251-60. PubMed ID: 10700381 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrial aspartate aminotransferase 27/32-410. Partially active enzyme derivative produced by limited proteolytic cleavage of native enzyme. Sandmeier E; Christen P J Biol Chem; 1980 Nov; 255(21):10284-9. PubMed ID: 7430125 [TBL] [Abstract][Full Text] [Related]
15. Active-site Arg --> Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase. Vacca RA; Giannattasio S; Graber R; Sandmeier E; Marra E; Christen P J Biol Chem; 1997 Aug; 272(35):21932-7. PubMed ID: 9268327 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of an oxidized mutant of human mitochondrial branched-chain aminotransferase. Herbert D; Gibbs S; Riddick A; Conway M; Dong M Acta Crystallogr F Struct Biol Commun; 2020 Jan; 76(Pt 1):14-19. PubMed ID: 31929181 [TBL] [Abstract][Full Text] [Related]
17. Contribution of a disulfide bridge to the stability of 1,3-1,4-beta-D-glucan 4-glucanohydrolase from Bacillus licheniformis. Pons J; Planas A; Querol E Protein Eng; 1995 Sep; 8(9):939-45. PubMed ID: 8746732 [TBL] [Abstract][Full Text] [Related]
18. Oxidation-reduction properties of two engineered redox-sensitive mutant Escherichia coli malate dehydrogenases. Setterdahl A; Hirasawa M; Bucher LM; Dholakia CA; Jacquot P; Yards H; Miller F; Stevens FJ; Knaff DB; Anderson LE Arch Biochem Biophys; 2000 Oct; 382(1):15-21. PubMed ID: 11051092 [TBL] [Abstract][Full Text] [Related]
19. Structural and functional consequences of inactivation of human glutathione S-transferase P1-1 mediated by the catechol metabolite of equine estrogens, 4-hydroxyequilenin. Chang M; Shin YG; van Breemen RB; Blond SY; Bolton JL Biochemistry; 2001 Apr; 40(15):4811-20. PubMed ID: 11294649 [TBL] [Abstract][Full Text] [Related]
20. Import of mutant forms of mitochondrial aspartate aminotransferase into isolated mitochondria. Giannattasio S; Marra E; Vacca RA; Iannace G; Quagliariello E Arch Biochem Biophys; 1992 Nov; 298(2):532-7. PubMed ID: 1416982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]