These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7929305)

  • 1. Bound substrate polypeptides can generally stabilize the tetradecameric structure of Cpn60 and induce its reassembly from monomers.
    Mendoza JA; Horowitz PM
    J Biol Chem; 1994 Oct; 269(42):25963-5. PubMed ID: 7929305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alteration of the quaternary structure of cpn60 modulates chaperonin-assisted folding. Implications for the mechanism of chaperonin action.
    Mendoza JA; Demeler B; Horowitz PM
    J Biol Chem; 1994 Jan; 269(4):2447-51. PubMed ID: 7905478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaperonin cpn60 from Escherichia coli protects the mitochondrial enzyme rhodanese against heat inactivation and supports folding at elevated temperatures.
    Mendoza JA; Lorimer GH; Horowitz PM
    J Biol Chem; 1992 Sep; 267(25):17631-4. PubMed ID: 1355476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermediates in the chaperonin-assisted refolding of rhodanese are trapped at low temperature and show a small stoichiometry.
    Mendoza JA; Lorimer GH; Horowitz PM
    J Biol Chem; 1991 Sep; 266(26):16973-6. PubMed ID: 1680127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monomeric chaperonin-60 and its 50-kDa fragment possess the ability to interact with non-native proteins, to suppress aggregation, and to promote protein folding.
    Taguchi H; Makino Y; Yoshida M
    J Biol Chem; 1994 Mar; 269(11):8529-34. PubMed ID: 7907593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The stability of the molecular chaperonin cpn60 is affected by site-directed replacement of cysteine 518.
    Luo GX; Horowitz PM
    J Biol Chem; 1994 Dec; 269(51):32151-4. PubMed ID: 7798211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High hydrostatic pressure induces the dissociation of cpn60 tetradecamers and reveals a plasticity of the monomers.
    Gorovits B; Raman CS; Horowitz PM
    J Biol Chem; 1995 Feb; 270(5):2061-6. PubMed ID: 7836434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a stable, reactivatable complex between chaperonin 60 and mitochondrial rhodanese.
    Mendoza JA; Butler MC; Horowitz PM
    J Biol Chem; 1992 Dec; 267(34):24648-54. PubMed ID: 1360012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding.
    Weber F; Keppel F; Georgopoulos C; Hayer-Hartl MK; Hartl FU
    Nat Struct Biol; 1998 Nov; 5(11):977-85. PubMed ID: 9808043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chaperonin assisted and unassisted refolding of rhodanese can be modulated by its N-terminal peptide.
    Mendoza JA; Horowitz PM
    J Protein Chem; 1994 Jan; 13(1):15-22. PubMed ID: 8011067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetradecameric chaperonin 60 can be assembled in vitro from monomers in a process that is ATP independent.
    Mendoza JA; Martinez JL; Horowitz PM
    Biochim Biophys Acta; 1995 Mar; 1247(2):209-14. PubMed ID: 7696310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning, expression, and characterization of chaperonin-60 and chaperonin-10 from a thermophilic bacterium, Thermus thermophilus HB8.
    Amada K; Yohda M; Odaka M; Endo I; Ishii N; Taguchi H; Yoshida M
    J Biochem; 1995 Aug; 118(2):347-54. PubMed ID: 8543569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfhydryl modification of E. coli Cpn60 leads to loss of its ability to support refolding of rhodanese but not to form a binary complex.
    Mendoza JA; Horowitz PM
    J Protein Chem; 1992 Dec; 11(6):589-94. PubMed ID: 1361328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity of chaperonin-60 for a protein substrate and its modulation by nucleotides and chaperonin-10.
    Staniforth RA; Burston SG; Atkinson T; Clarke AR
    Biochem J; 1994 Jun; 300 ( Pt 3)(Pt 3):651-8. PubMed ID: 7912068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mycobacterium tuberculosis GroEL homologues unusually exist as lower oligomers and retain the ability to suppress aggregation of substrate proteins.
    Qamra R; Srinivas V; Mande SC
    J Mol Biol; 2004 Sep; 342(2):605-17. PubMed ID: 15327959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A monomeric variant of GroEL binds nucleotides but is inactive as a molecular chaperone.
    White ZW; Fisher KE; Eisenstein E
    J Biol Chem; 1995 Sep; 270(35):20404-9. PubMed ID: 7657615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refolding and reassembly of active chaperonin GroEL after denaturation.
    Ybarra J; Horowitz PM
    J Biol Chem; 1995 Sep; 270(38):22113-5. PubMed ID: 7673187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding.
    Smith KE; Fisher MT
    J Biol Chem; 1995 Sep; 270(37):21517-23. PubMed ID: 7665563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refolding and recognition of mitochondrial malate dehydrogenase by Escherichia coli chaperonins cpn 60 (groEL) and cpn10 (groES).
    Hutchinson JP; el-Thaher TS; Miller AD
    Biochem J; 1994 Sep; 302 ( Pt 2)(Pt 2):405-10. PubMed ID: 7916564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen peroxide induces the dissociation of GroEL into monomers that can facilitate the reactivation of oxidatively inactivated rhodanese.
    Melkani GC; McNamara C; Zardeneta G; Mendoza JA
    Int J Biochem Cell Biol; 2004 Mar; 36(3):505-18. PubMed ID: 14687928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.