These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7929314)

  • 1. Non-steady state model applicable to NMR studies for calculating flux rates in glycolysis, gluconeogenesis, and citric acid cycle.
    Martin G; Chauvin MF; Dugelay S; Baverel G
    J Biol Chem; 1994 Oct; 269(42):26034-9. PubMed ID: 7929314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model applicable to NMR studies for calculating flux rates in five cycles involved in glutamate metabolism.
    Martin G; Chauvin MF; Baverel G
    J Biol Chem; 1997 Feb; 272(8):4717-28. PubMed ID: 9030523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic flux determination in C6 glioma cells using carbon-13 distribution upon [1-13C]glucose incubation.
    Portais JC; Schuster R; Merle M; Canioni P
    Eur J Biochem; 1993 Oct; 217(1):457-68. PubMed ID: 7901007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotopomer studies of gluconeogenesis and the Krebs cycle with 13C-labeled lactate.
    Katz J; Wals P; Lee WN
    J Biol Chem; 1993 Dec; 268(34):25509-21. PubMed ID: 7902352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interaction of glycolysis, gluconeogenesis and the tricarboxylic acid cycle in rat liver in vivo.
    Heath DF; Threlfall CJ
    Biochem J; 1968 Nov; 110(2):337-62. PubMed ID: 5726212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [14C]bicarbonate fixation into glucose and other metabolites in the liver of the starved rat under halothane anaesthesia. Metabolic channelling of mitochondrial oxaloacetate.
    Heath DF; Rose JG
    Biochem J; 1985 May; 227(3):851-65. PubMed ID: 3924030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The rabbit kidney tubule utilizes glucose for glutamine synthesis. A 13C NMR study.
    Chauvin MF; Mégnin-Chanet F; Martin G; Lhoste JM; Baverel G
    J Biol Chem; 1994 Oct; 269(42):26025-33. PubMed ID: 7929313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gluconeogenesis from labeled carbon: estimating isotope dilution.
    Kelleher JK
    Am J Physiol; 1986 Mar; 250(3 Pt 1):E296-305. PubMed ID: 3953814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gluconeogenesis in hepatocytes determined with [2-13C]acetate and quantitative 13C NMR spectroscopy.
    Petersen KF; Grunnet N
    Int J Biochem; 1993 Jan; 25(1):1-5. PubMed ID: 8432377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The redistribution of carbon label by the reactions involved in glycolysis, gluconeogenesis and the tricarboxylic acid cycle in rat liver.
    Heath DF
    Biochem J; 1968 Nov; 110(2):313-35. PubMed ID: 5726211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of liver citric acid cycle and gluconeogenesis based on 13C mass isotopomer distribution analysis of intermediates.
    Fernandez CA; Des Rosiers C
    J Biol Chem; 1995 Apr; 270(17):10037-42. PubMed ID: 7730305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 13C-NMR spectroscopic evaluation of the citric acid cycle flux in conditions of high aspartate transaminase activity in glucose-perfused rat hearts.
    Tran-Dinh S; Hoerter JA; Mateo P; Gyppaz F; Herve M
    Biochimie; 1998 Dec; 80(12):1013-24. PubMed ID: 9924979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of 14CO2 in estimating rates of hepatic gluconeogenesis.
    Esenmo E; Chandramouli V; Schumann WC; Kumaran K; Wahren J; Landau BR
    Am J Physiol; 1992 Jul; 263(1 Pt 1):E36-41. PubMed ID: 1322046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of glycogen synthesis and the Krebs cycle by mass isotopomer analysis with [U-13C]glucose in rats.
    Katz J; Lee WN; Wals PA; Bergner EA
    J Biol Chem; 1989 Aug; 264(22):12994-3004. PubMed ID: 2753898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of carbon fluxes through the tricarboxylic acid cycle in early germinating lettuce embryos.
    Salon C; Raymond P; Pradet A
    J Biol Chem; 1988 Sep; 263(25):12278-87. PubMed ID: 3137224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimates of Krebs cycle activity and contributions of gluconeogenesis to hepatic glucose production in fasting healthy subjects and IDDM patients.
    Landau BR; Chandramouli V; Schumann WC; Ekberg K; Kumaran K; Kalhan SC; Wahren J
    Diabetologia; 1995 Jul; 38(7):831-8. PubMed ID: 7556986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model to examine pathways of carbon flux from lactate to glucose at the first branch point in gluconeogenesis.
    Blackard WG; Clore JN
    J Biol Chem; 1988 Nov; 263(32):16725-30. PubMed ID: 3182810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated (2)H and (13)C NMR study of gluconeogenesis and TCA cycle flux in humans.
    Jones JG; Solomon MA; Cole SM; Sherry AD; Malloy CR
    Am J Physiol Endocrinol Metab; 2001 Oct; 281(4):E848-56. PubMed ID: 11551863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of thermal injury on relative anaplerosis and gluconeogenesis in the rat during infusion of [U-13C] propionate.
    Zhaofan X; Jianguang T; Guangyi W; Hongtai T; Shengde G; Horton JW
    Burns; 2002 Nov; 28(7):625-30. PubMed ID: 12417155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rates of gluconeogenesis and citric acid cycle in perfused livers, assessed from the mass spectrometric assay of the 13C labeling pattern of glutamate.
    Di Donato L; Des Rosiers C; Montgomery JA; David F; Garneau M; Brunengraber H
    J Biol Chem; 1993 Feb; 268(6):4170-80. PubMed ID: 8095046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.