These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 7929322)

  • 1. Biodiversity of apidaecin-type peptide antibiotics. Prospects of manipulating the antibacterial spectrum and combating acquired resistance.
    Casteels P; Romagnolo J; Castle M; Casteels-Josson K; Erdjument-Bromage H; Tempst P
    J Biol Chem; 1994 Oct; 269(42):26107-15. PubMed ID: 7929322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apidaecin-type peptide antibiotics function through a non-poreforming mechanism involving stereospecificity.
    Casteels P; Tempst P
    Biochem Biophys Res Commun; 1994 Feb; 199(1):339-45. PubMed ID: 8123032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apidaecin-type peptides: biodiversity, structure-function relationships and mode of action.
    Li WF; Ma GX; Zhou XX
    Peptides; 2006 Sep; 27(9):2350-9. PubMed ID: 16675061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial peptides: synthesis and antibacterial activity of linear and cyclic drosocin and apidaecin 1b analogues.
    Gobbo M; Biondi L; Filira F; Gennaro R; Benincasa M; Scolaro B; Rocchi R
    J Med Chem; 2002 Sep; 45(20):4494-504. PubMed ID: 12238928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo monitoring system for structure-function relationship analysis of the antibacterial peptide apidaecin.
    Taguchi S; Nakagawa K; Maeno M; Momose H
    Appl Environ Microbiol; 1994 Oct; 60(10):3566-72. PubMed ID: 7986034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lethal effects of apidaecin on Escherichia coli involve sequential molecular interactions with diverse targets.
    Castle M; Nazarian A; Yi SS; Tempst P
    J Biol Chem; 1999 Nov; 274(46):32555-64. PubMed ID: 10551808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional mapping of apidaecin through secondary structure correlation.
    Dutta RC; Nagpal S; Salunke DM
    Int J Biochem Cell Biol; 2008; 40(5):1005-15. PubMed ID: 18083056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria.
    Ebbensgaard A; Mordhorst H; Overgaard MT; Nielsen CG; Aarestrup FM; Hansen EB
    PLoS One; 2015; 10(12):e0144611. PubMed ID: 26656394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional mapping of amino acid residues responsible for the antibacterial action of apidaecin.
    Taguchi S; Ozaki A; Nakagawa K; Momose H
    Appl Environ Microbiol; 1996 Dec; 62(12):4652-5. PubMed ID: 8953737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular uptake of apidaecin 1b and related analogs in Gram-negative bacteria reveals novel antibacterial mechanism for proline-rich antimicrobial peptides.
    Berthold N; Hoffmann R
    Protein Pept Lett; 2014 Apr; 21(4):391-8. PubMed ID: 24164266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibacterial peptides isolated from insects.
    Otvos L
    J Pept Sci; 2000 Oct; 6(10):497-511. PubMed ID: 11071264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted engineering of the antibacterial peptide apidaecin, based on an in vivo monitoring assay system.
    Taguchi S; Mita K; Ichinohe K; Hashimoto S
    Appl Environ Microbiol; 2009 Mar; 75(5):1460-4. PubMed ID: 19114518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori.
    Hara S; Yamakawa M
    J Biol Chem; 1995 Dec; 270(50):29923-7. PubMed ID: 8530391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between heat shock proteins and antimicrobial peptides.
    Otvos L; O I; Rogers ME; Consolvo PJ; Condie BA; Lovas S; Bulet P; Blaszczyk-Thurin M
    Biochemistry; 2000 Nov; 39(46):14150-9. PubMed ID: 11087363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel antibacterial peptides isolated from a European bumblebee, Bombus pascuorum (Hymenoptera, Apoidea).
    Rees JA; Moniatte M; Bulet P
    Insect Biochem Mol Biol; 1997 May; 27(5):413-22. PubMed ID: 9219367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of antibacterial peptide 'apidaecin' using the secretory expression system of Streptomyces.
    Maeno M; Taguchi S; Momose H
    Biosci Biotechnol Biochem; 1993 Jul; 57(7):1206-7. PubMed ID: 7763994
    [No Abstract]   [Full Text] [Related]  

  • 17. Synthesis, characterization, and photoinduced antibacterial activity of porphyrin-type photosensitizers conjugated to the antimicrobial peptide apidaecin 1b.
    Dosselli R; Tampieri C; Ruiz-González R; De Munari S; Ragàs X; Sánchez-García D; Agut M; Nonell S; Reddi E; Gobbo M
    J Med Chem; 2013 Feb; 56(3):1052-63. PubMed ID: 23231466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The short proline-rich antibacterial peptide family.
    Otvos L
    Cell Mol Life Sci; 2002 Jul; 59(7):1138-50. PubMed ID: 12222961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nisin-controlled extracellular production of apidaecin in Lactococcus lactis.
    Zhou XX; Wang YB; Pan YJ; Li WF
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):947-53. PubMed ID: 18286279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribosomal binding and antibacterial activity of ethylene glycol-bridged apidaecin Api137 and oncocin Onc112 conjugates.
    Goldbach T; Knappe D; Reinsdorf C; Berg T; Hoffmann R
    J Pept Sci; 2016 Sep; 22(9):592-9. PubMed ID: 27406684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.