BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7929330)

  • 21. [Analysis of synaptic neurotransmitter release mechanisms using bacterial toxins].
    Doussau F; Humeau Y; Vitiello F; Popoff MR; Poulain B
    J Soc Biol; 1999; 193(6):457-67. PubMed ID: 10783704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anthrax lethal factor cleaves mouse nlrp1b in both toxin-sensitive and toxin-resistant macrophages.
    Hellmich KA; Levinsohn JL; Fattah R; Newman ZL; Maier N; Sastalla I; Liu S; Leppla SH; Moayeri M
    PLoS One; 2012; 7(11):e49741. PubMed ID: 23152930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fusion protein of Delta 27LFn and EFn has the potential as a novel anthrax toxin inhibitor.
    Kong Y; Guo Q; Yu C; Dong D; Zhao J; Cai C; Hou L; Song X; Fu L; Xu J; Chen W
    FEBS Lett; 2009 Apr; 583(8):1257-60. PubMed ID: 19332063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synaptobrevin cleavage by the tetanus toxin light chain is linked to the inhibition of exocytosis in chromaffin cells.
    Höhne-Zell B; Ecker A; Weller U; Gratzl M
    FEBS Lett; 1994 Nov; 355(2):131-4. PubMed ID: 7982485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of biologically active light chain of tetanus toxin in Escherichia coli. Evidence for the importance of the C-terminal 16 amino acids for full biological activity.
    Fairweather NF; Sanders D; Slater D; Hudel M; Habermann E; Weller U
    FEBS Lett; 1993 Jun; 323(3):218-22. PubMed ID: 8500613
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fusion complex formation protects synaptobrevin against proteolysis by tetanus toxin light chain.
    Pellegrini LL; O'Connor V; Betz H
    FEBS Lett; 1994 Oct; 353(3):319-23. PubMed ID: 7957884
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of neutralizing human monoclonal antibody directed to tetanus toxin in CHO cell.
    Chin J; Sohn Y; Lee SH; Park YI; Choi MJ
    Biologicals; 2003 Mar; 31(1):45-53. PubMed ID: 12623059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of N-terminal amino acids in the potency of anthrax lethal factor.
    Gupta PK; Moayeri M; Crown D; Fattah RJ; Leppla SH
    PLoS One; 2008 Sep; 3(9):e3130. PubMed ID: 18769623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cisplatin inhibition of anthrax lethal toxin.
    Moayeri M; Wiggins JF; Lindeman RE; Leppla SH
    Antimicrob Agents Chemother; 2006 Aug; 50(8):2658-65. PubMed ID: 16870755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anthrax toxin.
    Bhatnagar R; Batra S
    Crit Rev Microbiol; 2001; 27(3):167-200. PubMed ID: 11596878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Diverse Set of Single-domain Antibodies (VHHs) against the Anthrax Toxin Lethal and Edema Factors Provides a Basis for Construction of a Bispecific Agent That Protects against Anthrax Infection.
    Vrentas CE; Moayeri M; Keefer AB; Greaney AJ; Tremblay J; O'Mard D; Leppla SH; Shoemaker CB
    J Biol Chem; 2016 Oct; 291(41):21596-21606. PubMed ID: 27539858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Internalization of a Bacillus anthracis protective antigen-c-Myc fusion protein mediated by cell surface anti-c-Myc antibodies.
    Varughese M; Chi A; Teixeira AV; Nicholls PJ; Keith JM; Leppla SH
    Mol Med; 1998 Feb; 4(2):87-95. PubMed ID: 9508786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression and characterisation of the heavy chain of tetanus toxin: reconstitution of the fully-recombinant dichain protein in active form.
    Li Y; Aoki R; Dolly JO
    J Biochem; 1999 Jun; 125(6):1200-8. PubMed ID: 10348925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of transmitter release correlates with the proteolytic activity of tetanus toxin and botulinus toxin A in individual cultured synapses of Hirudo medicinalis.
    Bruns D; Engers S; Yang C; Ossig R; Jeromin A; Jahn R
    J Neurosci; 1997 Mar; 17(6):1898-910. PubMed ID: 9045719
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteolytic cleavage of cellubrevin and vesicle-associated membrane protein (VAMP) by tetanus toxin does not impair insulin-stimulated glucose transport or GLUT4 translocation in rat adipocytes.
    Hajduch E; Aledo JC; Watts C; Hundal HS
    Biochem J; 1997 Jan; 321 ( Pt 1)(Pt 1):233-8. PubMed ID: 9003424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adenoviral clostridial light chain gene-based synaptic inhibition through neuronal synaptobrevin elimination.
    Teng Q; Tanase D; Liu JK; Garrity-Moses ME; Baker KB; Boulis NM
    Gene Ther; 2005 Jan; 12(2):108-19. PubMed ID: 15496959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of membrane translocation by anthrax protective antigen.
    Wesche J; Elliott JL; Falnes PO; Olsnes S; Collier RJ
    Biochemistry; 1998 Nov; 37(45):15737-46. PubMed ID: 9843379
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Molecular mechanism of action of tetanus toxin and botulinum neurotoxins].
    Poulain B
    Pathol Biol (Paris); 1994 Feb; 42(2):173-82. PubMed ID: 7916455
    [TBL] [Abstract][Full Text] [Related]  

  • 39. IgA protease from Neisseria gonorrhoeae inhibits exocytosis in bovine chromaffin cells like tetanus toxin.
    Binscheck T; Bartels F; Bergel H; Bigalke H; Yamasaki S; Hayashi T; Niemann H; Pohlner J
    J Biol Chem; 1995 Jan; 270(4):1770-4. PubMed ID: 7829513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anthrax-toxin-mediated delivery of a 19 kDa antigen of Mycobacterium tuberculosis into the cytosol of mammalian cells.
    Mehra V; Khanna H; Chandra R; Singh Y
    Biotechnol Appl Biochem; 2001 Apr; 33(2):71-4. PubMed ID: 11277858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.