BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 7929650)

  • 1. Age-related changes in swine brain creatine kinase-catalyzed 31P exchange measured in vivo using 31P NMR magnetization transfer.
    Corbett RJ; Laptook AR
    J Cereb Blood Flow Metab; 1994 Nov; 14(6):1070-7. PubMed ID: 7929650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [ATP-phosphocreatine metabolism catalyzed by creatine kinase. Comparison of saturation transfer (NMR) and isotope labeling technics].
    Kupriianov VV; Liulina NV; Shteĭnshneĭder AIa; Zueva MIu; Saks VA
    Bioorg Khim; 1987 Mar; 13(3):300-8. PubMed ID: 3593427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creatine kinase-catalyzed ATP-phosphocreatine exchange: comparison of 31P-NMR saturation transfer technique and radioisotope tracer methods.
    Kupriyanov VV; Lyulina NV; Steinschneider AYa ; Zueva MYu ; Saks VA
    FEBS Lett; 1986 Nov; 208(1):89-93. PubMed ID: 3770212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphocreatine and creatine kinase in piglet cerebral gray and white matter in situ.
    Holtzman D; Mulkern R; Tsuji M; Cook C; Meyers R
    Dev Neurosci; 1996; 18(5-6):535-41. PubMed ID: 8940629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of compartmentation of ATP in skeletal and cardiac muscle using 31P nuclear magnetic resonance saturation transfer.
    Zahler R; Bittl JA; Ingwall JS
    Biophys J; 1987 Jun; 51(6):883-93. PubMed ID: 3607210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 31P magnetization transfer studies in the monkey brain.
    Mora BN; Narasimhan PT; Ross BD
    Magn Reson Med; 1992 Jul; 26(1):100-15. PubMed ID: 1625557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of 31P-NMR magnetization transfer and radioisotope exchange methods for assessment of an enzyme reaction mechanism: rate-determining steps of the creatine kinase reaction.
    Kupriyanov VV; Balaban RS; Lyulina NV; Steinschneider AYa ; Saks VA
    Biochim Biophys Acta; 1990 Dec; 1020(3):290-304. PubMed ID: 2248962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review.
    Kemp GJ; Meyerspeer M; Moser E
    NMR Biomed; 2007 Oct; 20(6):555-65. PubMed ID: 17628042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maturational increase in mouse brain creatine kinase reaction rates shown by phosphorus magnetic resonance.
    Holtzman D; McFarland EW; Jacobs D; Offutt MC; Neuringer LJ
    Brain Res Dev Brain Res; 1991 Feb; 58(2):181-8. PubMed ID: 2029764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of inversion spin transfer to monitor creatine kinase kinetics in rat skeletal muscle in vivo.
    Haseler LJ; Brooks WM; Irving MG; Bulliman BT; Kuchel PW; Doddrell DM
    Biochem Int; 1986 Apr; 12(4):613-8. PubMed ID: 3718523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 31P NMR saturation transfer measurements of phosphorus exchange reactions in rat heart and kidney in situ.
    Koretsky AP; Wang S; Klein MP; James TL; Weiner MW
    Biochemistry; 1986 Jan; 25(1):77-84. PubMed ID: 3954995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurements of exchange in the reaction catalysed by creatine kinase using 14C and 15N isotope labels and the NMR technique of saturation transfer.
    Brindle KM; Radda GK
    Biochim Biophys Acta; 1985 Jun; 829(2):188-201. PubMed ID: 3995051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 31P-saturation-transfer nuclear-magnetic-resonance measurements of phosphocreatine turnover in guinea-pig brain slices.
    Morris PG; Feeney J; Cox DW; Bachelard HS
    Biochem J; 1985 May; 227(3):777-82. PubMed ID: 4004799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 31P magnetization transfer studies of creatine kinase kinetics in living rabbit brain.
    Degani H; Alger JR; Shulman RG; Petroff OA; Prichard JW
    Magn Reson Med; 1987 Jul; 5(1):1-12. PubMed ID: 3657491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain creatine kinase reaction rates and reactant concentrations during seizures in developing rats.
    Holtzman D; Meyers R; Khait I; Jensen F
    Epilepsy Res; 1997 Apr; 27(1):7-11. PubMed ID: 9169286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creatine kinase-catalyzed reaction rate in the cyanide-poisoned mouse brain.
    Holtzman D; Offutt M; Tsuji M; Neuringer LJ; Jacobs D
    J Cereb Blood Flow Metab; 1993 Jan; 13(1):153-61. PubMed ID: 8417004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo phosphocreatine and ATP in piglet cerebral gray and white matter during seizures.
    Holtzman D; Mulkern R; Meyers R; Cook C; Allred E; Khait I; Jensen F; Tsuji M; Laussen P
    Brain Res; 1998 Feb; 783(1):19-27. PubMed ID: 9479037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR.
    Yoshizaki K; Watari H; Radda GK
    Biochim Biophys Acta; 1990 Feb; 1051(2):144-50. PubMed ID: 2310769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy reserves and utilization rates in developing brain measured in vivo by 31P and 1H nuclear magnetic resonance spectroscopy.
    Corbett RJ; Laptook AR; Garcia D; Ruley JI
    J Cereb Blood Flow Metab; 1993 Mar; 13(2):235-46. PubMed ID: 8436615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.