These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Efflux of cellular cholesterol and phospholipid to lipid-free apolipoproteins and class A amphipathic peptides. Yancey PG; Bielicki JK; Johnson WJ; Lund-Katz S; Palgunachari MN; Anantharamaiah GM; Segrest JP; Phillips MC; Rothblat GH Biochemistry; 1995 Jun; 34(24):7955-65. PubMed ID: 7794908 [TBL] [Abstract][Full Text] [Related]
3. Limited proteolysis of high density lipoprotein abolishes its interaction with cell-surface binding sites that promote cholesterol efflux. Mendez AJ; Oram JF Biochim Biophys Acta; 1997 Jun; 1346(3):285-99. PubMed ID: 9219913 [TBL] [Abstract][Full Text] [Related]
4. Design of a new class of amphipathic helical peptides for the plasma apolipoproteins that promote cellular cholesterol efflux but do not activate LCAT. Labeur C; Lins L; Vanloo B; Baert J; Brasseur R; Rosseneu M Arterioscler Thromb Vasc Biol; 1997 Mar; 17(3):580-8. PubMed ID: 9102180 [TBL] [Abstract][Full Text] [Related]
5. The influence of apolipoprotein structure on the efflux of cellular free cholesterol to high density lipoprotein. Davidson WS; Lund-Katz S; Johnson WJ; Anantharamaiah GM; Palgunachari MN; Segrest JP; Rothblat GH; Phillips MC J Biol Chem; 1994 Sep; 269(37):22975-82. PubMed ID: 8083197 [TBL] [Abstract][Full Text] [Related]
6. Apolipoprotein AI efficiently binds to and mediates cholesterol and phospholipid efflux from human but not rat aortic smooth muscle cells. Francis GA; Tsujita M; Terry TL Biochemistry; 1999 Dec; 38(49):16315-22. PubMed ID: 10587456 [TBL] [Abstract][Full Text] [Related]
7. Importance of central alpha-helices of human apolipoprotein A-I in the maturation of high-density lipoproteins. Frank PG; N'Guyen D; Franklin V; Neville T; Desforges M; Rassart E; Sparks DL; Marcel YL Biochemistry; 1998 Sep; 37(39):13902-9. PubMed ID: 9753480 [TBL] [Abstract][Full Text] [Related]
8. Selective down-regulation by protein kinase C inhibitors of apolipoprotein-mediated cellular cholesterol efflux in macrophages. Li Q; Tsujita M; Yokoyama S Biochemistry; 1997 Oct; 36(40):12045-52. PubMed ID: 9315842 [TBL] [Abstract][Full Text] [Related]
9. Influence of apolipoproteins AI, AII, and Cs on the metabolism of membrane and lysosomal cholesterol in macrophages. Mahlberg FH; Glick JM; Lund-Katz S; Rothblat GH J Biol Chem; 1991 Oct; 266(30):19930-7. PubMed ID: 1657906 [TBL] [Abstract][Full Text] [Related]
10. Retention of α-helical structure by HDL mimetic peptide ATI-5261 upon extensive dilution represents an important determinant for stimulating ABCA1 cholesterol efflux with high efficiency. Zheng Y; Patel AB; Narayanaswami V; Bielicki JK Biochem Biophys Res Commun; 2013 Nov; 441(1):71-6. PubMed ID: 24129191 [TBL] [Abstract][Full Text] [Related]
11. Selective inhibition of free apolipoprotein-mediated cellular lipid efflux by probucol. Tsujita M; Yokoyama S Biochemistry; 1996 Oct; 35(40):13011-20. PubMed ID: 8855936 [TBL] [Abstract][Full Text] [Related]
12. Defective removal of cellular cholesterol and phospholipids by apolipoprotein A-I in Tangier Disease. Francis GA; Knopp RH; Oram JF J Clin Invest; 1995 Jul; 96(1):78-87. PubMed ID: 7615839 [TBL] [Abstract][Full Text] [Related]
13. Phospholipid transfer protein enhances removal of cellular cholesterol and phospholipids by high-density lipoprotein apolipoproteins. Wolfbauer G; Albers JJ; Oram JF Biochim Biophys Acta; 1999 Jul; 1439(1):65-76. PubMed ID: 10395966 [TBL] [Abstract][Full Text] [Related]
14. Regulation of high density lipoprotein receptors in cultured macrophages: role of acyl-CoA:cholesterol acyltransferase. Schmitz G; Niemann R; Brennhausen B; Krause R; Assmann G EMBO J; 1985 Nov; 4(11):2773-9. PubMed ID: 2998754 [TBL] [Abstract][Full Text] [Related]
15. Deletion of amino acids Glu146-->Arg160 in human apolipoprotein A-I (ApoA-ISeattle) alters lecithin:cholesterol acyltransferase activity and recruitment of cell phospholipid. Lindholm EM; Bielicki JK; Curtiss LK; Rubin EM; Forte TM Biochemistry; 1998 Apr; 37(14):4863-8. PubMed ID: 9538003 [TBL] [Abstract][Full Text] [Related]
16. Oxidative tyrosylation of HDL enhances the depletion of cellular cholesteryl esters by a mechanism independent of passive sterol desorption. Francis GA; Oram JF; Heinecke JW; Bierman EL Biochemistry; 1996 Dec; 35(48):15188-97. PubMed ID: 8952466 [TBL] [Abstract][Full Text] [Related]
17. Regulation of high density lipoprotein receptor activity in cultured human skin fibroblasts and human arterial smooth muscle cells. Oram JF; Brinton EA; Bierman EL J Clin Invest; 1983 Nov; 72(5):1611-21. PubMed ID: 6313765 [TBL] [Abstract][Full Text] [Related]
18. ABCG1 redistributes cell cholesterol to domains removable by high density lipoprotein but not by lipid-depleted apolipoproteins. Vaughan AM; Oram JF J Biol Chem; 2005 Aug; 280(34):30150-7. PubMed ID: 15994327 [TBL] [Abstract][Full Text] [Related]
19. Cholesterol mobilization by free and lipid-bound apoAI(Milano) and apoAI(Milano)-apoAII heterodimers. Wang WQ; Moses AS; Francis GA Biochemistry; 2001 Mar; 40(12):3666-73. PubMed ID: 11297434 [TBL] [Abstract][Full Text] [Related]
20. Cellular cholesterol transport and efflux in fibroblasts are abnormal in subjects with familial HDL deficiency. Marcil M; Yu L; Krimbou L; Boucher B; Oram JF; Cohn JS; Genest J Arterioscler Thromb Vasc Biol; 1999 Jan; 19(1):159-69. PubMed ID: 9888879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]