These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 7931529)

  • 1. A rhythmic modulatory gating system in the stomatogastric nervous system of Homarus gammarus. I. Pyloric-related neurons in the commissural ganglia.
    Nagy F; Cardi P; Cournil I
    J Neurophysiol; 1994 Jun; 71(6):2477-89. PubMed ID: 7931529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rhythmic modulatory gating system in the stomatogastric nervous system of Homarus gammarus. II. Modulatory control of the pyloric CPG.
    Nagy F; Cardi P
    J Neurophysiol; 1994 Jun; 71(6):2490-502. PubMed ID: 7931530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rhythmic modulatory gating system in the stomatogastric nervous system of Homarus gammarus. III. Rhythmic control of the pyloric CPG.
    Cardi P; Nagy F
    J Neurophysiol; 1994 Jun; 71(6):2503-16. PubMed ID: 7931531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyloric motor pattern modification by a newly identified projection neuron in the crab stomatogastric nervous system.
    Norris BJ; Coleman MJ; Nusbaum MP
    J Neurophysiol; 1996 Jan; 75(1):97-108. PubMed ID: 8822544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recruitment of a projection neuron determines gastric mill motor pattern selection in the stomatogastric nervous system of the crab, Cancer borealis.
    Norris BJ; Coleman MJ; Nusbaum MP
    J Neurophysiol; 1994 Oct; 72(4):1451-63. PubMed ID: 7823079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppressive control of the crustacean pyloric network by a pair of identified interneurons. I. Modulation of the motor pattern.
    Cazalets JR; Nagy F; Moulins M
    J Neurosci; 1990 Feb; 10(2):448-57. PubMed ID: 2303853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmitter identification of pyloric neurons: electrically coupled neurons use different transmitters.
    Marder E; Eisen JS
    J Neurophysiol; 1984 Jun; 51(6):1345-61. PubMed ID: 6145757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State-dependent presynaptic inhibition regulates central pattern generator feedback to descending inputs.
    Blitz DM; Nusbaum MP
    J Neurosci; 2008 Sep; 28(38):9564-74. PubMed ID: 18799688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine modulates graded and spike-evoked synaptic inhibition independently at single synapses in pyloric network of lobster.
    Ayali A; Johnson BR; Harris-Warrick RM
    J Neurophysiol; 1998 Apr; 79(4):2063-9. PubMed ID: 9535968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of gastric rhythm generation in the isolated stomatogastric ganglion of spiny lobsters: bursting pacemaker potentials, synaptic interactions, and muscarinic modulation.
    Elson RC; Selverston AI
    J Neurophysiol; 1992 Sep; 68(3):890-907. PubMed ID: 1432055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. III. Synaptic connections of electrically coupled pyloric neurons.
    Eisen JS; Marder E
    J Neurophysiol; 1982 Dec; 48(6):1392-1415. PubMed ID: 6296329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of a lobster motor rhythm-generating network by disinhibition of permissive modulatory inputs.
    Faumont S; Simmers J; Meyrand P
    J Neurophysiol; 1998 Nov; 80(5):2776-80. PubMed ID: 9819280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mechanism for production of phase shifts in a pattern generator.
    Eisen JS; Marder E
    J Neurophysiol; 1984 Jun; 51(6):1375-93. PubMed ID: 6145759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A disynaptic sensorimotor pathway in the lobster stomatogastric system.
    Simmers J; Moulins M
    J Neurophysiol; 1988 Mar; 59(3):740-56. PubMed ID: 3367197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconfiguration of multiple motor networks by short- and long-term actions of an identified modulatory neuron.
    Faumont S; Combes D; Meyrand P; Simmers J
    Eur J Neurosci; 2005 Nov; 22(10):2489-502. PubMed ID: 16307592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distributed amine modulation of graded chemical transmission in the pyloric network of the lobster stomatogastric ganglion.
    Johnson BR; Peck JH; Harris-Warrick RM
    J Neurophysiol; 1995 Jul; 74(1):437-52. PubMed ID: 7472345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrically coupled pacemaker neurons respond differently to same physiological inputs and neurotransmitters.
    Marder E; Eisen JS
    J Neurophysiol; 1984 Jun; 51(6):1362-74. PubMed ID: 6145758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. II. Oscillatory properties of pyloric neurons.
    Miller JP; Selverston AI
    J Neurophysiol; 1982 Dec; 48(6):1378-91. PubMed ID: 7153798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monoamine control of the pacemaker kernel and cycle frequency in the lobster pyloric network.
    Ayali A; Harris-Warrick RM
    J Neurosci; 1999 Aug; 19(15):6712-22. PubMed ID: 10415000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colocalized neuropeptides activate a central pattern generator by acting on different circuit targets.
    Thirumalai V; Marder E
    J Neurosci; 2002 Mar; 22(5):1874-82. PubMed ID: 11880517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.