These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 7931675)

  • 1. Volume and activity quantitation with iodine-123 SPECT.
    Gilland DR; Jaszczak RJ; Turkington TG; Greer KL; Coleman RE
    J Nucl Med; 1994 Oct; 35(10):1707-13. PubMed ID: 7931675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative imaging of iodine-131 distributions in brain tumors with pinhole SPECT: a phantom study.
    Smith MF; Gilland DR; Coleman RE; Jaszczak RJ
    J Nucl Med; 1998 May; 39(5):856-64. PubMed ID: 9591589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative SPECT reconstruction of iodine-123 data.
    Gilland DR; Jaszczak RJ; Greer KL; Coleman RE
    J Nucl Med; 1991 Mar; 32(3):527-33. PubMed ID: 2005465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitation of iodine-123-beta-CIT dopamine receptor uptake in a phantom model.
    Leong LK; O'Connor MK; Maraganore DM
    J Nucl Med Technol; 1999 Jun; 27(2):117-22. PubMed ID: 10353108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-based compensation for quantitative 123I brain SPECT imaging.
    Du Y; Tsui BM; Frey EC
    Phys Med Biol; 2006 Mar; 51(5):1269-82. PubMed ID: 16481693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of quantitative 123I and 131I SPECT with Monte Carlo-based down-scatter compensation.
    Kangasmaa TS; Constable C; Sohlberg AO
    Nucl Med Commun; 2018 Dec; 39(12):1097-1102. PubMed ID: 30222722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy of 131I tumor quantification in radioimmunotherapy using SPECT imaging with an ultra-high-energy collimator: Monte Carlo study.
    Dewaraja YK; Ljungberg M; Koral KF
    J Nucl Med; 2000 Oct; 41(10):1760-7. PubMed ID: 11038009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Iodine-123 and Iodine-131 SPECT activity quantification: a Monte Carlo study.
    Morphis M; van Staden JA; du Raan H; Ljungberg M
    EJNMMI Phys; 2021 Aug; 8(1):61. PubMed ID: 34410539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system.
    Seo Y; Wong KH; Sun M; Franc BL; Hawkins RA; Hasegawa BH
    J Nucl Med; 2005 May; 46(5):868-77. PubMed ID: 15872362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved quantification in 123I cardiac SPECT imaging with deconvolution of septal penetration.
    Chen J; Garcia EV; Galt JR; Folks RD; Carrio I
    Nucl Med Commun; 2006 Jul; 27(7):551-8. PubMed ID: 16794515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of different energy window subtraction methods to correct for scatter and downscatter in I-123 SPECT imaging.
    Lagerburg V; de Nijs R; Holm S; Svarer C
    Nucl Med Commun; 2012 Jul; 33(7):708-18. PubMed ID: 22513883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Scatter Correction of Septal Penetration for
    Yamanaga T; Katayama Y; Nakama S; Kakimi A; Nagahata T; Kishimoto K; Ichida T; Higashiyama S; Kawabe J; Shiomi S
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2017; 73(10):1028-1038. PubMed ID: 29057774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of a novel collimator for high-sensitivity brain SPECT.
    El Fakhri G; Ouyang J; Zimmerman RE; Fischman AJ; Kijewski MF
    Med Phys; 2006 Jan; 33(1):209-15. PubMed ID: 16485427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of low- and medium-energy collimators for SPECT imaging with iodine-123-labeled antibodies.
    Macey DJ; DeNardo GL; DeNardo SJ; Hines HH
    J Nucl Med; 1986 Sep; 27(9):1467-74. PubMed ID: 3489084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantify total activity by volume-of-interest expansion with clinical SPECT/CT systems, a phantom study.
    Bian J; James JR; Wagner R; Halama J
    J Appl Clin Med Phys; 2023 Jan; 24(1):e13828. PubMed ID: 36347052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPECT imaging of fluorine-18.
    Leichner PK; Morgan HT; Holdeman KP; Harrison KA; Valentino F; Lexa R; Kelly RF; Hawkins WG; Dalrymple GV
    J Nucl Med; 1995 Aug; 36(8):1472-5. PubMed ID: 7629597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Performance of gamma camera collimators used for single photon emission computed tomography imaging with 123I-isopropyl iodoamphetamine].
    Saegusa K; Uno K; Arimizu N; Iba S; Uematsu S
    Radioisotopes; 1986 May; 35(5):256-62. PubMed ID: 3489250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collimator selection, acquisition speed, and visual assessment of 131I-tositumomab biodistribution in a phantom model.
    Tan HK; Wassenaar RW; Zeng W
    J Nucl Med Technol; 2006 Dec; 34(4):224-7. PubMed ID: 17146111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of SPECT quantification of radiopharmaceutical distribution in canine myocardium.
    Li J; Jaszczak RJ; Greer KL; Gilland DR; DeLong DM; Coleman RE
    J Nucl Med; 1995 Feb; 36(2):278-86. PubMed ID: 7830132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction.
    Zeintl J; Vija AH; Yahil A; Hornegger J; Kuwert T
    J Nucl Med; 2010 Jun; 51(6):921-8. PubMed ID: 20484423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.