These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 7931699)
1. Mechanisms and kinetics of uptake and efflux of L-methionine in an intestinal epithelial model (Caco-2). Chen J; Zhu Y; Hu M J Nutr; 1994 Oct; 124(10):1907-16. PubMed ID: 7931699 [TBL] [Abstract][Full Text] [Related]
2. Transport of a large neutral amino acid in a human intestinal epithelial cell line (Caco-2): uptake and efflux of phenylalanine. Hu M; Borchardt RT Biochim Biophys Acta; 1992 Jun; 1135(3):233-44. PubMed ID: 1623010 [TBL] [Abstract][Full Text] [Related]
3. Transepithelial taurine transport in caco-2 cell monolayers. Roig-Pérez S; Moretó M; Ferrer R J Membr Biol; 2005 Mar; 204(2):85-92. PubMed ID: 16151704 [TBL] [Abstract][Full Text] [Related]
4. Basolateral amino acid transport systems in the perfused exocrine pancreas: sodium-dependency and kinetic interactions between influx and efflux mechanisms. Mann GE; Peran S Biochim Biophys Acta; 1986 Jun; 858(2):263-74. PubMed ID: 3087423 [TBL] [Abstract][Full Text] [Related]
5. Net glutathione secretion across primary cultured rabbit conjunctival epithelial cell layers. Gukasyan HJ; Lee VH; Kim KJ; Kannan R Invest Ophthalmol Vis Sci; 2002 Apr; 43(4):1154-61. PubMed ID: 11923260 [TBL] [Abstract][Full Text] [Related]
6. Guanidine transport across the apical and basolateral membranes of human intestinal Caco-2 cells is mediated by two different mechanisms. Cova E; Laforenza U; Gastaldi G; Sambuy Y; Tritto S; Faelli A; Ventura U J Nutr; 2002 Jul; 132(7):1995-2003. PubMed ID: 12097682 [TBL] [Abstract][Full Text] [Related]
7. Na+-independent lysine transport in human intestinal Caco-2 cells. Thwaites DT; Markovich D; Murer H; Simmons NL J Membr Biol; 1996 Jun; 151(3):215-24. PubMed ID: 8661509 [TBL] [Abstract][Full Text] [Related]
8. [The in vitro kinetics of uptake, transport and efflux of 9-nitrocamptothecin in Caco-2 cell model]. Sha XY; Fang XL; Wu YJ Yao Xue Xue Bao; 2004 Oct; 39(10):839-43. PubMed ID: 15700828 [TBL] [Abstract][Full Text] [Related]
9. Transport of L-methionine in human diploid fibroblast strain WI38. Sullivan JL; Debusk A Biochim Biophys Acta; 1978 Apr; 508(2):389-400. PubMed ID: 638147 [TBL] [Abstract][Full Text] [Related]
10. The efflux of lysine from the basolateral membrane of human cultured intestinal cells (Caco-2) occurs by different mechanisms depending on the extracellular availability of amino acids. Ferruzza S; Ranaldi G; Di Girolamo M; Sambuy Y J Nutr; 1997 Jun; 127(6):1183-90. PubMed ID: 9187634 [TBL] [Abstract][Full Text] [Related]
11. The transport of lysine across monolayers of human cultured intestinal cells (Caco-2) depends on Na(+)-dependent and Na(+)-independent mechanisms on different plasma membrane domains. Ferruzza S; Ranaldi G; Di Girolamo M; Sambuy Y J Nutr; 1995 Oct; 125(10):2577-85. PubMed ID: 7562093 [TBL] [Abstract][Full Text] [Related]
12. Dependence of intracellular Na+ concentration on apical and basolateral membrane Na+ influx in frog skin. Stoddard JS; Helman SI Am J Physiol; 1985 Nov; 249(5 Pt 2):F662-71. PubMed ID: 3877468 [TBL] [Abstract][Full Text] [Related]
14. Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line Caco-2: specific transport systems in apical and basolateral membranes. Inui K; Yamamoto M; Saito H J Pharmacol Exp Ther; 1992 Apr; 261(1):195-201. PubMed ID: 1560365 [TBL] [Abstract][Full Text] [Related]
15. Transcellular transport of oral cephalosporins in human intestinal epithelial cells, Caco-2: interaction with dipeptide transport systems in apical and basolateral membranes. Matsumoto S; Saito H; Inui K J Pharmacol Exp Ther; 1994 Aug; 270(2):498-504. PubMed ID: 8071843 [TBL] [Abstract][Full Text] [Related]
16. Effects of ouabain and furosemide on basolateral membrane Na efflux of frog skin. Cox TC; Helman SI Am J Physiol; 1983 Sep; 245(3):F312-21. PubMed ID: 6604462 [TBL] [Abstract][Full Text] [Related]
17. Functional characterization and cloning of amino acid transporter B(0,+) (ATB(0,+)) in primary cultured rat pneumocytes. Uchiyama T; Fujita T; Gukasyan HJ; Kim KJ; Borok Z; Crandall ED; Lee VH J Cell Physiol; 2008 Mar; 214(3):645-54. PubMed ID: 17960566 [TBL] [Abstract][Full Text] [Related]
18. Mechanism and kinetics of transcellular transport of a new beta-lactam antibiotic loracarbef across an intestinal epithelial membrane model system (Caco-2). Hu M; Chen J; Zhu Y; Dantzig AH; Stratford RE; Kuhfeld MT Pharm Res; 1994 Oct; 11(10):1405-13. PubMed ID: 7855043 [TBL] [Abstract][Full Text] [Related]
19. Physiologic concentrations of zinc affect the kinetics of copper uptake and transport in the human intestinal cell model, Caco-2. Reeves PG; Briske-Anderson M; Johnson L J Nutr; 1998 Oct; 128(10):1794-801. PubMed ID: 9772151 [TBL] [Abstract][Full Text] [Related]
20. The absorptive flux of the anti-epileptic drug substance vigabatrin is carrier-mediated across Caco-2 cell monolayers. Nøhr MK; Hansen SH; Brodin B; Holm R; Nielsen CU Eur J Pharm Sci; 2014 Jan; 51():1-10. PubMed ID: 24008184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]