These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 7931699)
21. Phosphate depletion in opossum kidney cells: apical but not basolateral or transepithelial adaptions of Pi transport. Barac-Nieto M; Alfred M; Spitzer A Exp Nephrol; 2001; 9(4):258-64. PubMed ID: 11423725 [TBL] [Abstract][Full Text] [Related]
22. Transport of L-tyrosine by B16/F10 malignant melanocytes: characterization of the process. Jara JR; Martinez-Liarte JH; Solano F Pigment Cell Res; 1990 Dec; 3(6):290-6. PubMed ID: 1983230 [TBL] [Abstract][Full Text] [Related]
23. The transport of cationic amino acids in human airway cells: expression of system y+L activity and transepithelial delivery of NOS inhibitors. Rotoli BM; Bussolati O; Sala R; Gazzola GC; Dall'Asta V FASEB J; 2005 May; 19(7):810-2. PubMed ID: 15746185 [TBL] [Abstract][Full Text] [Related]
24. Mechanisms underlying saturable intestinal absorption of metformin. Proctor WR; Bourdet DL; Thakker DR Drug Metab Dispos; 2008 Aug; 36(8):1650-8. PubMed ID: 18458049 [TBL] [Abstract][Full Text] [Related]
25. Kinetics of the sodium-dependent glutamine transporter in human intestinal cell confluent monolayers. Souba WW; Pan M; Stevens BR Biochem Biophys Res Commun; 1992 Oct; 188(2):746-53. PubMed ID: 1445319 [TBL] [Abstract][Full Text] [Related]
26. Distinct mechanisms of zinc uptake at the apical and basolateral membranes of caco-2 cells. Raffaniello RD; Lee SY; Teichberg S; Wapnir RA J Cell Physiol; 1992 Aug; 152(2):356-61. PubMed ID: 1639868 [TBL] [Abstract][Full Text] [Related]
27. Intestinal absorptive transport of the hydrophilic cation ranitidine: a kinetic modeling approach to elucidate the role of uptake and efflux transporters and paracellular vs. transcellular transport in Caco-2 cells. Bourdet DL; Pollack GM; Thakker DR Pharm Res; 2006 Jun; 23(6):1178-87. PubMed ID: 16741656 [TBL] [Abstract][Full Text] [Related]
28. SLC transporters ASCT2, B To VPTH; Masagounder K; Loewen ME Physiol Rep; 2019 Nov; 7(21):e14274. PubMed ID: 31705630 [TBL] [Abstract][Full Text] [Related]
29. Glutathione transport in human retinal pigment epithelial (HRPE) cells: apical localization of sodium-dependent gsh transport. Kannan R; Tang D; Hu J; Bok D Exp Eye Res; 2001 Jun; 72(6):661-6. PubMed ID: 11384154 [TBL] [Abstract][Full Text] [Related]
30. [Intestional absorption and mechanism of tiliani in Caco-2 cell model]. Huang Z; Xing J; Wang X; Wang S; Yuan Y Zhongguo Zhong Yao Za Zhi; 2012 May; 37(9):1315-8. PubMed ID: 22803383 [TBL] [Abstract][Full Text] [Related]
31. Kinetic evidence for separate systems in transport of D- and L-methionine by rat small intestine. Brachet P; Alvarado F; Puigserver A Am J Physiol; 1987 Mar; 252(3 Pt 1):G320-4. PubMed ID: 3826371 [TBL] [Abstract][Full Text] [Related]
32. Cellular site of active K absorption in the guinea-pig distal colonic epithelium. Dörge A; Beck FX; Rechkemmer G Pflugers Arch; 1998 Jul; 436(2):280-8. PubMed ID: 9594029 [TBL] [Abstract][Full Text] [Related]
33. Transport characteristics of zolmitriptan in a human intestinal epithelial cell line Caco-2. Yu L; Zeng S J Pharm Pharmacol; 2007 May; 59(5):655-60. PubMed ID: 17524230 [TBL] [Abstract][Full Text] [Related]
34. Monocarboxylate transporter 1 is up-regulated in Caco-2 cells by the methionine precursor DL-2-hydroxy-(4-methylthio)butanoic acid. Martín-Venegas R; Brufau MT; Mañas-Cano O; Mercier Y; Nonis MK; Ferrer R Vet J; 2014 Dec; 202(3):555-60. PubMed ID: 25447800 [TBL] [Abstract][Full Text] [Related]
35. Effect of pH on L- and D-methionine uptake across the apical membrane of Caco-2 cells. Martín-Venegas R; Rodríguez-Lagunas MJ; Mercier Y; Geraert PA; Ferrer R Am J Physiol Cell Physiol; 2009 Mar; 296(3):C632-8. PubMed ID: 19144861 [TBL] [Abstract][Full Text] [Related]
36. Sodium transport in the hen lower intestine. induction of sodium sites in the brush border by a low sodium diet. Bindslev N J Physiol; 1979 Mar; 288():449-66. PubMed ID: 469729 [TBL] [Abstract][Full Text] [Related]
37. Uptake pathways for amino acids in mouse intestine. Karasov W; Solberg D; Carter S; Hughes M; Phan D; Zollman F; Diamond J Am J Physiol; 1986 Oct; 251(4 Pt 1):G501-8. PubMed ID: 3094381 [TBL] [Abstract][Full Text] [Related]
38. Vectorial transport of fexofenadine across Caco-2 cells: involvement of apical uptake and basolateral efflux transporters. Ming X; Knight BM; Thakker DR Mol Pharm; 2011 Oct; 8(5):1677-86. PubMed ID: 21780830 [TBL] [Abstract][Full Text] [Related]
39. Na+ gradient-dependent glycine uptake in basolateral membrane vesicles from the dog kidney. Schwab SJ; Hammerman MR Am J Physiol; 1985 Sep; 249(3 Pt 2):F338-45. PubMed ID: 4037088 [TBL] [Abstract][Full Text] [Related]
40. Taxol transport by human intestinal epithelial Caco-2 cells. Walle UK; Walle T Drug Metab Dispos; 1998 Apr; 26(4):343-6. PubMed ID: 9531522 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]