BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 7931759)

  • 1. Confocal microscopy in turbid media.
    Schmitt JM; Knüttel A; Yadlowsky M
    J Opt Soc Am A Opt Image Sci Vis; 1994 Aug; 11(8):2226-35. PubMed ID: 7931759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confocal fluorescence polarization microscopy in turbid media: effects of scattering-induced depolarization.
    Bigelow CE; Foster TH
    J Opt Soc Am A Opt Image Sci Vis; 2006 Nov; 23(11):2932-43. PubMed ID: 17047721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture.
    Liu JT; Mandella MJ; Crawford JM; Contag CH; Wang TD; Kino GS
    J Biomed Opt; 2008; 13(3):034020. PubMed ID: 18601565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the tissue-imaging performance of confocal microscope architectures via Monte Carlo simulations.
    Chen Y; Wang D; Liu JT
    Opt Lett; 2012 Nov; 37(21):4495-7. PubMed ID: 23114341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between optical-resolution photoacoustic microscopy and confocal laser scanning microscopy for turbid sample imaging.
    U-Thainual P; Kim DH
    J Biomed Opt; 2015 Dec; 20(12):121202. PubMed ID: 26256640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media.
    Wang L; Jacques SL
    J Opt Soc Am A Opt Image Sci Vis; 1993 Aug; 10(8):1746-52. PubMed ID: 8350159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring the scattering coefficient of turbid media from two-photon microscopy.
    Sevrain D; Dubreuil M; Leray A; Odin C; Le Grand Y
    Opt Express; 2013 Oct; 21(21):25221-35. PubMed ID: 24150363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplitude and phase of tightly focused laser beams in turbid media.
    Hayakawa CK; Venugopalan V; Krishnamachari VV; Potma EO
    Phys Rev Lett; 2009 Jul; 103(4):043903. PubMed ID: 19659354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Monte Carlo simulation of confocal microscopy in biological tissue.
    Schmitt JM; Ben-Letaief K
    J Opt Soc Am A Opt Image Sci Vis; 1996 May; 13(5):952-61. PubMed ID: 8622177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media.
    Tanbakuchi AA; Rouse AR; Gmitro AF
    J Biomed Opt; 2009; 14(4):044024. PubMed ID: 19725735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific confocal fluorescence imaging of biological microstructures in a turbid medium.
    Saloma C; Palmes-Saloma C; Kondoh H
    Phys Med Biol; 1998 Jun; 43(6):1741-59. PubMed ID: 9651037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depolarization of light in turbid media: a scattering event resolved Monte Carlo study.
    Guo X; Wood MF; Ghosh N; Vitkin IA
    Appl Opt; 2010 Jan; 49(2):153-62. PubMed ID: 20062501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing the performance of dual-axis confocal microscopes via Monte-Carlo scattering simulations and diffraction theory.
    Chen Y; Liu JT
    J Biomed Opt; 2013 Jun; 18(6):066006. PubMed ID: 23733022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffuse light propagation in a turbid medium with varying refractive index: Monte Carlo modeling in a spherically symmetrical geometry.
    Shendeleva ML; Molloy JA
    Appl Opt; 2006 Sep; 45(27):7018-25. PubMed ID: 16946780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the optical properties of turbid media from a single Monte Carlo simulation.
    Kienle A; Patterson MS
    Phys Med Biol; 1996 Oct; 41(10):2221-7. PubMed ID: 8912392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image reconstruction through turbid media under a transmission-mode microscope.
    Gan X; Gu M
    J Biomed Opt; 2002 Jul; 7(3):372-7. PubMed ID: 12175286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo modeling of optical coherence tomography imaging through turbid media.
    Lu Q; Gan X; Gu M; Luo Q
    Appl Opt; 2004 Mar; 43(8):1628-37. PubMed ID: 15046164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose.
    Wang X; Yao G; Wang LV
    Appl Opt; 2002 Feb; 41(4):792-801. PubMed ID: 11993927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propagation of polarized light in birefringent turbid media: a Monte Carlo study.
    Wang X; Wang LV
    J Biomed Opt; 2002 Jul; 7(3):279-90. PubMed ID: 12175276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids.
    Hart VP; Doyle TE
    Appl Opt; 2013 Sep; 52(25):6220-9. PubMed ID: 24085080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.