These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 7931780)

  • 41. Subfracture insult to a knee joint causes alterations in the bone and in the functional stiffness of overlying cartilage.
    Newberry WN; Zukosky DK; Haut RC
    J Orthop Res; 1997 May; 15(3):450-5. PubMed ID: 9246093
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact testing to determine the mechanical properties of articular cartilage in isolation and on bone.
    Burgin LV; Aspden RM
    J Mater Sci Mater Med; 2008 Feb; 19(2):703-11. PubMed ID: 17619965
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The thickness of the calcified layer of articular cartilage: a function of the load supported?
    Müller-Gerbl M; Schulte E; Putz R
    J Anat; 1987 Oct; 154():103-11. PubMed ID: 3446655
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of subchondral bone in the restoration of articular cartilage.
    Stupina TA; Stepanov MA; Teplen'kii MP
    Bull Exp Biol Med; 2015 Apr; 158(6):820-3. PubMed ID: 25894785
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Two different correlations between nanoindentation modulus and mineral content in the bone-cartilage interface.
    Gupta HS; Schratter S; Tesch W; Roschger P; Berzlanovich A; Schoeberl T; Klaushofer K; Fratzl P
    J Struct Biol; 2005 Feb; 149(2):138-48. PubMed ID: 15681230
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Micro-anatomical response of cartilage-on-bone to compression: mechanisms of deformation within and beyond the directly loaded matrix.
    Thambyah A; Broom N
    J Anat; 2006 Nov; 209(5):611-22. PubMed ID: 17062019
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Histomorphometric analysis of articular cartilage, zone of calcified cartilage, and subchondral bone plate in femoral heads from clinically normal dogs and dogs with moderate or severe osteoarthritis.
    Daubs BM; Markel MD; Manley PA
    Am J Vet Res; 2006 Oct; 67(10):1719-24. PubMed ID: 17014322
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Blunt impact causes changes in bone and cartilage in a regularly exercised animal model.
    Newberry WN; Mackenzie CD; Haut RC
    J Orthop Res; 1998 May; 16(3):348-54. PubMed ID: 9671930
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Shock absorbing ability of articular cartilage and subchondral bone under impact compression.
    Malekipour F; Whitton C; Oetomo D; Lee PV
    J Mech Behav Biomed Mater; 2013 Oct; 26():127-35. PubMed ID: 23746699
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interspecies comparison of subchondral bone properties important for cartilage repair.
    Chevrier A; Kouao AS; Picard G; Hurtig MB; Buschmann MD
    J Orthop Res; 2015 Jan; 33(1):63-70. PubMed ID: 25242685
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anatomic variation of depth-dependent mechanical properties in neonatal bovine articular cartilage.
    Silverberg JL; Dillavou S; Bonassar L; Cohen I
    J Orthop Res; 2013 May; 31(5):686-91. PubMed ID: 23280608
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A finite element model of an idealized diarthrodial joint to investigate the effects of variation in the mechanical properties of the tissues.
    Dar FH; Aspden RM
    Proc Inst Mech Eng H; 2003; 217(5):341-8. PubMed ID: 14558646
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of subchondral bone, and its histomorphology, on the dynamic viscoelasticity of cartilage, bone and osteochondral cores.
    Fell NLA; Lawless BM; Cox SC; Cooke ME; Eisenstein NM; Shepherd DET; Espino DM
    Osteoarthritis Cartilage; 2019 Mar; 27(3):535-543. PubMed ID: 30576795
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of Structural Changes in Subchondral Bone on Articular Cartilage in a Beagle Dog Model.
    Yan D; Liu TX; Liu BY; Wang L; Qian ZH; Cheng XG; Li KC
    Biomed Environ Sci; 2017 Mar; 30(3):194-203. PubMed ID: 28427489
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Does cartilage compliance reduce skeletal impact loads? The relative force-attenuating properties of articular cartilage, synovial fluid, periarticular soft tissues and bone.
    Radin EL; Paul IL
    Arthritis Rheum; 1970; 13(2):139-44. PubMed ID: 5421724
    [No Abstract]   [Full Text] [Related]  

  • 56. Anisotropy of bovine cortical bone tissue damage properties.
    Szabó ME; Thurner PJ
    J Biomech; 2013 Jan; 46(1):2-6. PubMed ID: 23063771
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Mechanical properties of the bone tissue of the femur head].
    Shargorodskiĭ VS; Kresnyĭ DI; Lopushan Vn
    Ortop Travmatol Protez; 1989 Oct; (10):3-7. PubMed ID: 2622631
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Age-related histological changes in calcified cartilage and subchondral bone in femoral heads from healthy humans.
    Nielsen AW; Klose-Jensen R; Hartlev LB; Boel LWT; Thomsen JS; Keller KK; Hauge EM
    Bone; 2019 Dec; 129():115037. PubMed ID: 31425888
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Maturation-related compressive properties of rabbit knee articular cartilage and volume fraction of subchondral tissue.
    Wei X; Räsänen T; Messner K
    Osteoarthritis Cartilage; 1998 Nov; 6(6):400-9. PubMed ID: 10343773
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of training on the calcified zone of equine middle carpal articular cartilage.
    Murray RC; Whitton RC; Vedi S; Goodship AE; Lekeux P
    Equine Vet J Suppl; 1999 Jul; (30):274-8. PubMed ID: 10659268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.