BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 7932155)

  • 1. Selective pulmonary and venous smooth muscle relaxation by furosemide: a comparison with morphine.
    Greenberg S; McGowan C; Xie J; Summer WR
    J Pharmacol Exp Ther; 1994 Sep; 270(3):1077-85. PubMed ID: 7932155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelium-dependent relaxation by substance P in human isolated omental arteries and veins: relative contribution of prostanoids, nitric oxide and hyperpolarization.
    Wallerstedt SM; Bodelsson M
    Br J Pharmacol; 1997 Jan; 120(1):25-30. PubMed ID: 9117094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Na(+)-K+ ATPase in cyclic GMP-mediated relaxation of canine pulmonary artery smooth muscle cells.
    Tamaoki J; Tagaya E; Nishimura K; Isono K; Nagai A
    Br J Pharmacol; 1997 Sep; 122(1):112-6. PubMed ID: 9298536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BAY 41-2272 [5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]pyrimidin-4-ylamine]-induced dilation in ovine pulmonary artery: role of sodium pump.
    Bawankule DU; Sathishkumar K; Sardar KK; Chanda D; Krishna AV; Prakash VR; Mishra SK
    J Pharmacol Exp Ther; 2005 Jul; 314(1):207-13. PubMed ID: 15792996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relaxation by bradykinin in porcine ciliary artery. Role of nitric oxide and K(+)-channels.
    Zhu P; Bény JL; Flammer J; Lüscher TF; Haefliger IO
    Invest Ophthalmol Vis Sci; 1997 Aug; 38(9):1761-7. PubMed ID: 9286264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of NO and EDHF-mediated endothelial function in the porcine pulmonary circulation: comparison between pulmonary artery and vein.
    Zhang RZ; Yang Q; Yim AP; Huang Y; He GW
    Vascul Pharmacol; 2006 Mar; 44(3):183-91. PubMed ID: 16448859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sevoflurane promotes endothelium-dependent smooth muscle relaxation in isolated human omental arteries and veins.
    Thorlacius K; Bodelsson M
    Anesth Analg; 2004 Aug; 99(2):423-8, table of contents. PubMed ID: 15271717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contractile effects of diaspirin cross-linked hemoglobin (DCLHb) on isolated porcine blood vessels.
    Freas W; Llave R; Jing M; Hart J; McQuillan P; Muldoon S
    J Lab Clin Med; 1995 Jun; 125(6):762-7. PubMed ID: 7769371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF.
    Zygmunt PM; Plane F; Paulsson M; Garland CJ; Högestätt ED
    Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery.
    Dong H; Waldron GJ; Cole WC; Triggle CR
    Br J Pharmacol; 1998 Mar; 123(5):821-32. PubMed ID: 9535009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycyrrhetinic acid-sensitive mechanism does not make a major contribution to non-prostanoid, non-nitric oxide mediated endothelium-dependent relaxation of rat mesenteric artery in response to acetylcholine.
    Tanaka Y; Otsuka A; Tanaka H; Shigenobu K
    Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):227-39. PubMed ID: 10509734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. K+ is an endothelium-derived hyperpolarizing factor in rat arteries.
    Edwards G; Dora KA; Gardener MJ; Garland CJ; Weston AH
    Nature; 1998 Nov; 396(6708):269-72. PubMed ID: 9834033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise training enhances relaxation of the isolated guinea-pig saphenous artery in response to acetylcholine.
    Choate JK; Kato K; Mohan RM
    Exp Physiol; 2000 Jan; 85(1):103-8. PubMed ID: 10662899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the sarcolemmal sodium pump in nitroprusside-induced vasodilation of the pulmonary artery.
    Tagaya E; Tamaoki J; Nishimura K; Nagai A
    Res Commun Mol Pathol Pharmacol; 1997 Sep; 97(3):291-300. PubMed ID: 9387189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NO/PGI2-independent vasorelaxation and the cytochrome P450 pathway in rabbit carotid artery.
    Dong H; Waldron GJ; Galipeau D; Cole WC; Triggle CR
    Br J Pharmacol; 1997 Feb; 120(4):695-701. PubMed ID: 9051310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of protein kinase C in reduced relaxant responses to the NO/cyclic GMP pathway in piglet pulmonary arteries contracted by the thromboxane A2-mimetic U46619.
    Pérez-Vizcaíno F; Villamor E; Duarte J; Tamargo J
    Br J Pharmacol; 1997 Aug; 121(7):1323-33. PubMed ID: 9257910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium channel-mediated relaxation to acetylcholine in rabbit arteries.
    Cowan CL; Palacino JJ; Najibi S; Cohen RA
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1482-9. PubMed ID: 8396636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of progesterone on the contractile response of isolated pulmonary artery in rabbits.
    Li HF; Zheng TZ; Li W; Qu SY; Zhang CL
    Can J Physiol Pharmacol; 2001 Jun; 79(6):545-50. PubMed ID: 11430592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vasorelaxing effect of U50,488H in pulmonary artery and underlying mechanism in rats.
    Sun X; Ma S; Zang YM; Lu SY; Guo HT; Bi H; Wang YM; Ma H; Ma XL; Pei JM
    Life Sci; 2006 Apr; 78(21):2516-22. PubMed ID: 16336977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.