BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 7932199)

  • 1. Toxicity of cephaloridine to carnitine transport and fatty acid metabolism in rabbit renal cortical mitochondria: structure-activity relationships.
    Tune BM; Hsu CY
    J Pharmacol Exp Ther; 1994 Sep; 270(3):873-80. PubMed ID: 7932199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity of cephalosporins to fatty acid metabolism in rabbit renal cortical mitochondria.
    Tune BM; Hsu CY
    Biochem Pharmacol; 1995 Mar; 49(5):727-34. PubMed ID: 7887988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The renal mitochondrial toxicity of cephalosporins: specificity of the effect on anionic substrate uptake.
    Tune BM; Hsu CY
    J Pharmacol Exp Ther; 1990 Jan; 252(1):65-9. PubMed ID: 2299604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of the bacterial endotoxin-cephaloridine toxic synergy and the protective effects of saline infusion in the rabbit kidney.
    Tune BM; Hsu CY; Fravert D
    J Pharmacol Exp Ther; 1988 Feb; 244(2):520-5. PubMed ID: 3346835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cephaloridine on respiration by renal cortical mitochondria.
    Tune BM; Wu KY; Fravert D; Holtzman D
    J Pharmacol Exp Ther; 1979 Jul; 210(1):98-100. PubMed ID: 448652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cephalosporin nephrotoxicity. Transport, cytotoxicity and mitochondrial toxicity of cephaloglycin.
    Tune BM; Fravert D
    J Pharmacol Exp Ther; 1980 Oct; 215(1):186-90. PubMed ID: 7452482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of nephrotoxic beta-lactam antibiotics on the mitochondrial metabolism of monocarboxylic substrates.
    Tune BM; Hsu CY
    J Pharmacol Exp Ther; 1995 Jul; 274(1):194-9. PubMed ID: 7616399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mitochondrial respiratory toxicity of cephalosporin antibiotics. An inhibitory effect on substrate uptake.
    Tune BM; Sibley RK; Hsu CY
    J Pharmacol Exp Ther; 1988 Jun; 245(3):1054-9. PubMed ID: 3385637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carnitine deficiency disorders in children.
    Stanley CA
    Ann N Y Acad Sci; 2004 Nov; 1033():42-51. PubMed ID: 15591002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of piperonyl butoxide on cephalosporin nephrotoxicity in the rabbit. An effect on cephaloridine transport.
    Tune BM; Kuo CH; Hook JB; Hsu CY; Fravert D
    J Pharmacol Exp Ther; 1983 Mar; 224(3):520-4. PubMed ID: 6827476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acid beta-oxidation in peroxisomes and mitochondria: the first, unequivocal evidence for the involvement of carnitine in shuttling propionyl-CoA from peroxisomes to mitochondria.
    Jakobs BS; Wanders RJ
    Biochem Biophys Res Commun; 1995 Aug; 213(3):1035-41. PubMed ID: 7654220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acid oxidation intermediates and the effect of fasting on oxidation in red and white skeletal muscle.
    Carroll JE; Villadiego A; Morse DP
    Muscle Nerve; 1983 Jun; 6(5):367-73. PubMed ID: 6136912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of carnitine-dependent metabolic pathways in heart disease without primary ischemia.
    Bremer J; Hokland B
    Z Kardiol; 1987; 76 Suppl 5():9-13. PubMed ID: 3324530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative and mitochondrial toxic effects of cephalosporin antibiotics in the kidney. A comparative study of cephaloridine and cephaloglycin.
    Tune BM; Fravert D; Hsu CY
    Biochem Pharmacol; 1989 Mar; 38(5):795-802. PubMed ID: 2930580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p.
    van Roermund CW; Hettema EH; van den Berg M; Tabak HF; Wanders RJ
    EMBO J; 1999 Nov; 18(21):5843-52. PubMed ID: 10545096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The influence of panthotenic acid mitochondrial oxidation and oxidative phosphorylation in liver of rats with alimentary obesity].
    Naruta EE; Egorov AI; Omel'ianchik CN; Buko VU
    Vopr Pitan; 2004; 73(4):3-7. PubMed ID: 15460980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nephrotoxicity and hepatotoxicity of 5,6-dichloro-4-thia-5-hexenoic acid: evidence for fatty acid beta-oxidation-dependent bioactivation.
    Fitzsimmons ME; Baggs RB; Anders MW
    J Pharmacol Exp Ther; 1994 Oct; 271(1):515-23. PubMed ID: 7965751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation.
    Holloway GP; Benton CR; Mullen KL; Yoshida Y; Snook LA; Han XX; Glatz JF; Luiken JJ; Lally J; Dyck DJ; Bonen A
    Am J Physiol Endocrinol Metab; 2009 Apr; 296(4):E738-47. PubMed ID: 19141681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a short-chain carnitine-acylcarnitine translocase in mitochondria specifically related to the metabolism of branched-chain amino acids.
    Roe DS; Roe CR; Brivet M; Sweetman L
    Mol Genet Metab; 2000 Jan; 69(1):69-75. PubMed ID: 10655160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carnitine stimulation of pyruvate dehydrogenase complex (PDHC) in isolated human skeletal muscle mitochondria.
    Uziel G; Garavaglia B; Di Donato S
    Muscle Nerve; 1988 Jul; 11(7):720-4. PubMed ID: 3405240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.