These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 7932199)
1. Toxicity of cephaloridine to carnitine transport and fatty acid metabolism in rabbit renal cortical mitochondria: structure-activity relationships. Tune BM; Hsu CY J Pharmacol Exp Ther; 1994 Sep; 270(3):873-80. PubMed ID: 7932199 [TBL] [Abstract][Full Text] [Related]
2. Toxicity of cephalosporins to fatty acid metabolism in rabbit renal cortical mitochondria. Tune BM; Hsu CY Biochem Pharmacol; 1995 Mar; 49(5):727-34. PubMed ID: 7887988 [TBL] [Abstract][Full Text] [Related]
3. The renal mitochondrial toxicity of cephalosporins: specificity of the effect on anionic substrate uptake. Tune BM; Hsu CY J Pharmacol Exp Ther; 1990 Jan; 252(1):65-9. PubMed ID: 2299604 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms of the bacterial endotoxin-cephaloridine toxic synergy and the protective effects of saline infusion in the rabbit kidney. Tune BM; Hsu CY; Fravert D J Pharmacol Exp Ther; 1988 Feb; 244(2):520-5. PubMed ID: 3346835 [TBL] [Abstract][Full Text] [Related]
5. Effect of cephaloridine on respiration by renal cortical mitochondria. Tune BM; Wu KY; Fravert D; Holtzman D J Pharmacol Exp Ther; 1979 Jul; 210(1):98-100. PubMed ID: 448652 [TBL] [Abstract][Full Text] [Related]
6. Cephalosporin nephrotoxicity. Transport, cytotoxicity and mitochondrial toxicity of cephaloglycin. Tune BM; Fravert D J Pharmacol Exp Ther; 1980 Oct; 215(1):186-90. PubMed ID: 7452482 [TBL] [Abstract][Full Text] [Related]
7. Effects of nephrotoxic beta-lactam antibiotics on the mitochondrial metabolism of monocarboxylic substrates. Tune BM; Hsu CY J Pharmacol Exp Ther; 1995 Jul; 274(1):194-9. PubMed ID: 7616399 [TBL] [Abstract][Full Text] [Related]
8. The mitochondrial respiratory toxicity of cephalosporin antibiotics. An inhibitory effect on substrate uptake. Tune BM; Sibley RK; Hsu CY J Pharmacol Exp Ther; 1988 Jun; 245(3):1054-9. PubMed ID: 3385637 [TBL] [Abstract][Full Text] [Related]
9. Carnitine deficiency disorders in children. Stanley CA Ann N Y Acad Sci; 2004 Nov; 1033():42-51. PubMed ID: 15591002 [TBL] [Abstract][Full Text] [Related]
10. Effects of piperonyl butoxide on cephalosporin nephrotoxicity in the rabbit. An effect on cephaloridine transport. Tune BM; Kuo CH; Hook JB; Hsu CY; Fravert D J Pharmacol Exp Ther; 1983 Mar; 224(3):520-4. PubMed ID: 6827476 [TBL] [Abstract][Full Text] [Related]
11. Fatty acid beta-oxidation in peroxisomes and mitochondria: the first, unequivocal evidence for the involvement of carnitine in shuttling propionyl-CoA from peroxisomes to mitochondria. Jakobs BS; Wanders RJ Biochem Biophys Res Commun; 1995 Aug; 213(3):1035-41. PubMed ID: 7654220 [TBL] [Abstract][Full Text] [Related]
12. Fatty acid oxidation intermediates and the effect of fasting on oxidation in red and white skeletal muscle. Carroll JE; Villadiego A; Morse DP Muscle Nerve; 1983 Jun; 6(5):367-73. PubMed ID: 6136912 [TBL] [Abstract][Full Text] [Related]
13. Role of carnitine-dependent metabolic pathways in heart disease without primary ischemia. Bremer J; Hokland B Z Kardiol; 1987; 76 Suppl 5():9-13. PubMed ID: 3324530 [TBL] [Abstract][Full Text] [Related]
14. Oxidative and mitochondrial toxic effects of cephalosporin antibiotics in the kidney. A comparative study of cephaloridine and cephaloglycin. Tune BM; Fravert D; Hsu CY Biochem Pharmacol; 1989 Mar; 38(5):795-802. PubMed ID: 2930580 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p. van Roermund CW; Hettema EH; van den Berg M; Tabak HF; Wanders RJ EMBO J; 1999 Nov; 18(21):5843-52. PubMed ID: 10545096 [TBL] [Abstract][Full Text] [Related]
16. [The influence of panthotenic acid mitochondrial oxidation and oxidative phosphorylation in liver of rats with alimentary obesity]. Naruta EE; Egorov AI; Omel'ianchik CN; Buko VU Vopr Pitan; 2004; 73(4):3-7. PubMed ID: 15460980 [TBL] [Abstract][Full Text] [Related]
17. Nephrotoxicity and hepatotoxicity of 5,6-dichloro-4-thia-5-hexenoic acid: evidence for fatty acid beta-oxidation-dependent bioactivation. Fitzsimmons ME; Baggs RB; Anders MW J Pharmacol Exp Ther; 1994 Oct; 271(1):515-23. PubMed ID: 7965751 [TBL] [Abstract][Full Text] [Related]
18. In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation. Holloway GP; Benton CR; Mullen KL; Yoshida Y; Snook LA; Han XX; Glatz JF; Luiken JJ; Lally J; Dyck DJ; Bonen A Am J Physiol Endocrinol Metab; 2009 Apr; 296(4):E738-47. PubMed ID: 19141681 [TBL] [Abstract][Full Text] [Related]
19. Evidence for a short-chain carnitine-acylcarnitine translocase in mitochondria specifically related to the metabolism of branched-chain amino acids. Roe DS; Roe CR; Brivet M; Sweetman L Mol Genet Metab; 2000 Jan; 69(1):69-75. PubMed ID: 10655160 [TBL] [Abstract][Full Text] [Related]
20. Carnitine stimulation of pyruvate dehydrogenase complex (PDHC) in isolated human skeletal muscle mitochondria. Uziel G; Garavaglia B; Di Donato S Muscle Nerve; 1988 Jul; 11(7):720-4. PubMed ID: 3405240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]