These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 7932233)

  • 1. Omega-conotoxin-sensitive and -resistant transmitter release from the chick ciliary presynaptic terminal.
    Yawo H; Chuhma N
    J Physiol; 1994 Jun; 477 ( Pt 3)(Pt 3):437-48. PubMed ID: 7932233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Re-evaluation of calcium currents in pre- and postsynaptic neurones of the chick ciliary ganglion.
    Yawo H; Momiyama A
    J Physiol; 1993 Jan; 460():153-72. PubMed ID: 7683716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Ca2+ channel blockers on transmitter release and presynaptic currents at the frog neuromuscular junction.
    Katz E; Ferro PA; Cherksey BD; Sugimori M; Llinás R; Uchitel OD
    J Physiol; 1995 Aug; 486 ( Pt 3)(Pt 3):695-706. PubMed ID: 7473230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mu-Opioid receptor inhibits N-type Ca2+ channels in the calyx presynaptic terminal of the embryonic chick ciliary ganglion.
    Endo K; Yawo H
    J Physiol; 2000 May; 524 Pt 3(Pt 3):769-81. PubMed ID: 10790157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein kinase C potentiates transmitter release from the chick ciliary presynaptic terminal by increasing the exocytotic fusion probability.
    Yawo H
    J Physiol; 1999 Feb; 515 ( Pt 1)(Pt 1):169-80. PubMed ID: 9925887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABAB receptors modulate an omega-conotoxin-sensitive calcium current that is required for synaptic transmission in the Xenopus embryo spinal cord.
    Wall MJ; Dale N
    J Neurosci; 1994 Oct; 14(10):6248-55. PubMed ID: 7931577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronisation of neurotransmitter release during postnatal development in a calyceal presynaptic terminal of rat.
    Chuhma N; Koyano K; Ohmori H
    J Physiol; 2001 Jan; 530(Pt 1):93-104. PubMed ID: 11136861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noradrenaline modulates transmitter release by enhancing the Ca2+ sensitivity of exocytosis in the chick ciliary presynaptic terminal.
    Yawo H
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):385-91. PubMed ID: 8782103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium channel subtypes in cat chromaffin cells.
    Albillos A; Artalejo AR; López MG; Gandía L; García AG; Carbone E
    J Physiol; 1994 Jun; 477(Pt 2):197-213. PubMed ID: 7523660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional dependence of Ca(2+)-activated K+ current on L- and N-type Ca2+ channels: differences between chicken sympathetic and parasympathetic neurons suggest different regulatory mechanisms.
    Wisgirda ME; Dryer SE
    Proc Natl Acad Sci U S A; 1994 Mar; 91(7):2858-62. PubMed ID: 8146200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological identification of two types of presynaptic voltage-dependent calcium channels at CA3-CA1 synapses of the hippocampus.
    Wu LG; Saggau P
    J Neurosci; 1994 Sep; 14(9):5613-22. PubMed ID: 8083757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Ca2+ channel blocker neurotoxins on transmitter release and presynaptic currents at the mouse neuromuscular junction.
    Katz E; Protti DA; Ferro PA; Rosato Siri MD; Uchitel OD
    Br J Pharmacol; 1997 Aug; 121(8):1531-40. PubMed ID: 9283685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dihydropyridine-sensitive and omega-conotoxin-sensitive calcium channels in a mammalian neuroblastoma-glioma cell line.
    Kasai H; Neher E
    J Physiol; 1992 Mar; 448():161-88. PubMed ID: 1375634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium currents recorded from a vertebrate presynaptic nerve terminal are resistant to the dihydropyridine nifedipine.
    Stanley EF; Atrakchi AH
    Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9683-7. PubMed ID: 2175910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two types of high-threshold calcium currents inhibited by omega-conotoxin in nerve terminals of rat neurohypophysis.
    Wang X; Treistman SN; Lemos JR
    J Physiol; 1992 Jan; 445():181-99. PubMed ID: 1323666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dihydropyridine- and neurotoxin-sensitive and -insensitive calcium currents in acutely dissociated neurons of the rat central amygdala.
    Yu B; Shinnick-Gallagher P
    J Neurophysiol; 1997 Feb; 77(2):690-701. PubMed ID: 9065841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental changes in calcium current pharmacology and somatostatin inhibition in chick parasympathetic neurons.
    White MG; Crumling MA; Meriney SD
    J Neurosci; 1997 Aug; 17(16):6302-13. PubMed ID: 9236240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presynaptic inhibition at excitatory hippocampal synapses: development and role of presynaptic Ca2+ channels.
    Scholz KP; Miller RJ
    J Neurophysiol; 1996 Jul; 76(1):39-46. PubMed ID: 8836207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-type Ca2+ channels mediate transmitter release at the electromotoneuron-electrocyte synapses of the weakly electric fish Gymnotus carapo.
    Sierra F; Lorenzo D; Macadar O; Buño W
    Brain Res; 1995 Jun; 683(2):215-20. PubMed ID: 7552357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity to dihydropyridines, omega-conotoxin and noradrenaline reveals multiple high-voltage-activated Ca2+ channels in rat insulinoma and human pancreatic beta-cells.
    Pollo A; Lovallo M; Biancardi E; Sher E; Socci C; Carbone E
    Pflugers Arch; 1993 Jun; 423(5-6):462-71. PubMed ID: 7688893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.