BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 7932556)

  • 1. Bicyclic hydantoins with a bridgehead nitrogen. Comparison of anticonvulsant activities with binding to the neuronal voltage-dependent sodium channel.
    Brouillette WJ; Jestkov VP; Brown ML; Akhtar MS; DeLorey TM; Brown GB
    J Med Chem; 1994 Sep; 37(20):3289-93. PubMed ID: 7932556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anticonvulsant activities of phenyl-substituted bicyclic 2,4-oxazolidinediones and monocyclic models. Comparison with binding to the neuronal voltage-dependent sodium channel.
    Brouillette WJ; Brown GB; DeLorey TM; Shirali SS; Grunewald GL
    J Med Chem; 1988 Nov; 31(11):2218-21. PubMed ID: 2846842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium channel binding and anticonvulsant activities of hydantoins containing conformationally constrained 5-phenyl substituents.
    Brouillette WJ; Brown GB; DeLorey TM; Liang G
    J Pharm Sci; 1990 Oct; 79(10):871-4. PubMed ID: 2177789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative molecular field analysis of hydantoin binding to the neuronal voltage-dependent sodium channel.
    Brown ML; Zha CC; Van Dyke CC; Brown GB; Brouillette WJ
    J Med Chem; 1999 May; 42(9):1537-45. PubMed ID: 10229624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of log P and phenyl ring conformation on the binding of 5-phenylhydantoins to the voltage-dependent sodium channel.
    Brown ML; Brown GB; Brouillette WJ
    J Med Chem; 1997 Feb; 40(4):602-7. PubMed ID: 9046351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and structure-activity relationship studies for hydantoins and analogues as voltage-gated sodium channel ligands.
    Zha C; Brown GB; Brouillette WJ
    J Med Chem; 2004 Dec; 47(26):6519-28. PubMed ID: 15588087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium channel binding and anticonvulsant activities for the enantiomers of a bicyclic 2,4-oxazolidinedione and monocyclic models.
    Brouillette WJ; Grunewald GL; Brown GB; DeLorey TM; Akhtar MS; Liang G
    J Med Chem; 1989 Jul; 32(7):1577-80. PubMed ID: 2544727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and electronic conditions for anticonvulsant activity of bicyclic hydantoin derivatives.
    Karolak-Wojciechowska J; Kwiatkowski W; Kiec-Kononowicz K
    Pharmazie; 1995 Feb; 50(2):114-7. PubMed ID: 7700963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deducing the bioactive face of hydantoin anticonvulsant drugs using NMR spectroscopy.
    Tiedje KE; Weaver DF
    Can J Neurol Sci; 2008 May; 35(2):232-6. PubMed ID: 18574940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydantoin-substituted 4,6-dichloroindole-2-carboxylic acids as ligands with high affinity for the glycine binding site of the NMDA receptor.
    Jansen M; Potschka H; Brandt C; Löscher W; Dannhardt G
    J Med Chem; 2003 Jan; 46(1):64-73. PubMed ID: 12502360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anticonvulsant activity and interactions with neuronal voltage-dependent sodium channel of analogues of ameltolide.
    Vamecq J; Lambert D; Poupaert JH; Masereel B; Stables JP
    J Med Chem; 1998 Aug; 41(18):3307-13. PubMed ID: 9719582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis, and anticonvulsant activity of new N-Mannich bases derived from spirosuccinimides and spirohydantoins.
    Obniska J; Byrtus H; Kamiński K; Pawłowski M; Szczesio M; Karolak-Wojciechowska J
    Bioorg Med Chem; 2010 Aug; 18(16):6134-42. PubMed ID: 20638856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of structural modification of the hydantoin ring on anticonvulsant activity.
    Cortes S; Liao ZK; Watson D; Kohn H
    J Med Chem; 1985 May; 28(5):601-6. PubMed ID: 3989820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-activity studies on anticonvulsant sugar sulfamates related to topiramate. Enhanced potency with cyclic sulfate derivatives.
    Maryanoff BE; Costanzo MJ; Nortey SO; Greco MN; Shank RP; Schupsky JJ; Ortegon MP; Vaught JL
    J Med Chem; 1998 Apr; 41(8):1315-43. PubMed ID: 9548821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct N
    Shintani Y; Kato K; Kawami M; Takano M; Kumamoto T
    Chem Pharm Bull (Tokyo); 2021; 69(4):407-410. PubMed ID: 33790085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [3H]Phenytoin identifies a novel anticonvulsant-binding domain on voltage-dependent sodium channels.
    Francis J; Burnham WM
    Mol Pharmacol; 1992 Dec; 42(6):1097-103. PubMed ID: 1336115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pharmacophore derived phenytoin analogue with increased affinity for slow inactivated sodium channels exhibits a desired anticonvulsant profile.
    Lenkowski PW; Batts TW; Smith MD; Ko SH; Jones PJ; Taylor CH; McCusker AK; Davis GC; Hartmann HA; White HS; Brown ML; Patel MK
    Neuropharmacology; 2007 Mar; 52(3):1044-54. PubMed ID: 17174360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Evaluation of Novel Diazaspiro Hydantoins as Potential Anticonvulsants.
    Kumar CSA; Veeresh B; Ramesha KC; Raj CSA; Mahadevaiah KM; Prasad SBB
    Cent Nerv Syst Agents Med Chem; 2017; 17(3):201-208. PubMed ID: 28707581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and anticonvulsant activity of new n-mannich bases derived from 5-cyclopropyl-5-phenyl-hydantoins.
    Byrtus H; Obniska J; Czopek A; Kamiński K
    Arch Pharm (Weinheim); 2011 Apr; 344(4):231-41. PubMed ID: 21469172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The metabolism of 3-methyl-5-ethyl-5-phenylhydantoin (mephenytoin) to 5-ethyl-5-phenylhydantoin (Nirvanol) in mice in relation to anticonvulsant activity.
    Kupferberg HJ; Yonekawa W
    Drug Metab Dispos; 1975; 3(1):26-9. PubMed ID: 234831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.