These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 7932788)
21. South American Weakly Electric Fish (Gymnotiformes) Are Long-Wavelength-Sensitive Cone Monochromats. Liu DW; Lu Y; Yan HY; Zakon HH Brain Behav Evol; 2016; 88(3-4):204-212. PubMed ID: 27820927 [TBL] [Abstract][Full Text] [Related]
22. Early duplication and functional diversification of the opsin gene family in insects. Spaethe J; Briscoe AD Mol Biol Evol; 2004 Aug; 21(8):1583-94. PubMed ID: 15155799 [TBL] [Abstract][Full Text] [Related]
23. Molecular and functional characterization of opsins in barfin flounder (Verasper moseri). Kasagi S; Mizusawa K; Murakami N; Andoh T; Furufuji S; Kawamura S; Takahashi A Gene; 2015 Feb; 556(2):182-91. PubMed ID: 25433330 [TBL] [Abstract][Full Text] [Related]
24. Vertebrate opsins belonging to different classes vary in constitutively active properties resulting from salt-bridge mutations. Nickle B; Wilkie SE; Cowing JA; Hunt DM; Robinson PR Biochemistry; 2006 Jun; 45(23):7307-13. PubMed ID: 16752919 [TBL] [Abstract][Full Text] [Related]
25. Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids. Parry JW; Carleton KL; Spady T; Carboo A; Hunt DM; Bowmaker JK Curr Biol; 2005 Oct; 15(19):1734-9. PubMed ID: 16213819 [TBL] [Abstract][Full Text] [Related]
26. Long-wavelength sensitive opsin (LWS) gene variability in Neotropical cichlids (Teleostei: Cichlidae). Fabrin TMC; Prioli SMAP; Prioli AJ An Acad Bras Cienc; 2017; 89(1):213-222. PubMed ID: 28423081 [TBL] [Abstract][Full Text] [Related]
27. Evolution of the cichlid visual palette through ontogenetic subfunctionalization of the opsin gene arrays. Spady TC; Parry JW; Robinson PR; Hunt DM; Bowmaker JK; Carleton KL Mol Biol Evol; 2006 Aug; 23(8):1538-47. PubMed ID: 16720697 [TBL] [Abstract][Full Text] [Related]
28. Spatio-temporal characterization of retinal opsin gene expression during thyroid hormone-induced and natural development of rainbow trout. Veldhoen K; Allison WT; Veldhoen N; Anholt BR; Helbing CC; Hawryshyn CW Vis Neurosci; 2006; 23(2):169-79. PubMed ID: 16638170 [TBL] [Abstract][Full Text] [Related]
29. Differential sensitivity to estrogen-induced opsin expression in two poeciliid freshwater fish species. Friesen CN; Ramsey ME; Cummings ME Gen Comp Endocrinol; 2017 May; 246():200-210. PubMed ID: 28013033 [TBL] [Abstract][Full Text] [Related]
30. Sequence Analysis and Ontogenetic Expression Patterns of Cone Opsin Genes in the Bluefin Killifish (Lucania goodei). Chang CH; Catchen J; Moran RL; Rivera-Colón AG; Wang YC; Fuller RC J Hered; 2021 Jul; 112(4):357-366. PubMed ID: 33837393 [TBL] [Abstract][Full Text] [Related]
31. Ancestral loss of short wave-sensitive cone visual pigment in lorisiform prosimians, contrasting with its strict conservation in other prosimians. Kawamura S; Kubotera N J Mol Evol; 2004 Mar; 58(3):314-21. PubMed ID: 15045486 [TBL] [Abstract][Full Text] [Related]
32. Initial mutational steps toward loss of opsin gene function in cavefish. Yokoyama S; Meany A; Wilkens H; Yokoyama R Mol Biol Evol; 1995 Jul; 12(4):527-32. PubMed ID: 7659009 [TBL] [Abstract][Full Text] [Related]
33. Coupling and decoupling of evolutionary mode between X- and Y-chromosomal red-green opsin genes in owl monkeys. Nagao K; Takenaka N; Hirai M; Kawamura S Gene; 2005 Jun; 352():82-91. PubMed ID: 15922519 [TBL] [Abstract][Full Text] [Related]
34. Convergent evolution of the red- and green-like visual pigment genes in fish, Astyanax fasciatus, and human. Yokoyama R; Yokoyama S Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9315-8. PubMed ID: 2123554 [TBL] [Abstract][Full Text] [Related]
35. A novel rod-like opsin isolated from the extra-retinal photoreceptors of teleost fish. Philp AR; Bellingham J; Garcia-Fernandez J; Foster RG FEBS Lett; 2000 Feb; 468(2-3):181-8. PubMed ID: 10692583 [TBL] [Abstract][Full Text] [Related]
36. Extraordinarily low evolutionary rates of short wavelength-sensitive opsin pseudogenes. Yokoyama S; Starmer WT; Liu Y; Tada T; Britt L Gene; 2014 Jan; 534(1):93-9. PubMed ID: 24125953 [TBL] [Abstract][Full Text] [Related]
37. Molecular evolution of bat color vision genes. Wang D; Oakley T; Mower J; Shimmin LC; Yim S; Honeycutt RL; Tsao H; Li WH Mol Biol Evol; 2004 Feb; 21(2):295-302. PubMed ID: 14660703 [TBL] [Abstract][Full Text] [Related]
38. Molecular cloning of the salamander red and blue cone visual pigments. Xu L; Hazard ES; Lockman DK; Crouch RK; Ma J Mol Vis; 1998 Jul; 4():10. PubMed ID: 9675215 [TBL] [Abstract][Full Text] [Related]
39. Characterization and Evolution of the Spotted Gar Retina. Sukeena JM; Galicia CA; Wilson JD; McGinn T; Boughman JW; Robison BD; Postlethwait JH; Braasch I; Stenkamp DL; Fuerst PG J Exp Zool B Mol Dev Evol; 2016 Nov; 326(7):403-421. PubMed ID: 27862951 [TBL] [Abstract][Full Text] [Related]
40. Isolation, DNA sequence and evolution of a color visual pigment gene of the blind cave fish Astyanax fasciatus. Yokoyama R; Yokoyama S Vision Res; 1990; 30(6):807-16. PubMed ID: 2385921 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]