These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 7932793)

  • 21. A computational analysis of localized Ca2+-dynamics generated by heterogeneous release sites.
    Cooper Z; Greenwood M; Mazzag B
    Bull Math Biol; 2009 Oct; 71(7):1543-79. PubMed ID: 19440797
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accuracy of estimated phylogenetic trees from molecular data. I. Distantly related species.
    Tateno Y; Nei M; Tajima F
    J Mol Evol; 1982; 18(6):387-404. PubMed ID: 7175956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A statistical method for analysing cospeciation in tritrophic ecology using electrical circuit theory.
    Nooney C; Barber S; Gusnanto A; Gilks WR
    Stat Appl Genet Mol Biol; 2017 Nov; 16(5-6):313-331. PubMed ID: 29166289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pattern of nucleotide substitution and the extent of purifying selection in retroviruses.
    Graur D
    J Mol Evol; 1984-1985; 21(3):221-31. PubMed ID: 6443129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances.
    Lake JA
    Proc Natl Acad Sci U S A; 1994 Feb; 91(4):1455-9. PubMed ID: 8108430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quest for the Best Evolutionary Model.
    Zardoya R
    J Mol Evol; 2021 Apr; 89(3):146-150. PubMed ID: 33201312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of evolutionary distance between nucleotide sequences.
    Tajima F; Nei M
    Mol Biol Evol; 1984 Apr; 1(3):269-85. PubMed ID: 6599968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Closed form modeling of evolutionary rates by exponential Brownian functionals.
    Privault N; Guindon S
    J Math Biol; 2015 Dec; 71(6-7):1387-409. PubMed ID: 25716798
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Statistical alignment based on fragment insertion and deletion models.
    Metzler D
    Bioinformatics; 2003 Mar; 19(4):490-9. PubMed ID: 12611804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. When is it safe to use an oversimplified substitution model in tree-making?
    Rzhetsky A; Sitnikova T
    Mol Biol Evol; 1996 Nov; 13(9):1255-65. PubMed ID: 8896378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of two methods for constructing evolutionary distances from a weighted contribution of transition and transversion differences.
    Pollock DD; Goldstein DB
    Mol Biol Evol; 1995 Jul; 12(4):713-7. PubMed ID: 7659024
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An improved algorithm for statistical alignment of sequences related by a star tree.
    Miklós I
    Bull Math Biol; 2002 Jul; 64(4):771-9. PubMed ID: 12216420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accurate estimation of gene evolutionary rates using XRATE, with an application to transmembrane proteins.
    Heger A; Ponting CP; Holmes I
    Mol Biol Evol; 2009 Aug; 26(8):1715-21. PubMed ID: 19380462
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolutionary learning and hierarchical Markov systems.
    Hastings HM; Waner S; Wu YR
    Biosystems; 1989; 23(2-3):161-8; discussion 169. PubMed ID: 2627563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonuniformity of nucleotide substitution rates in molecular evolution: computer simulation and analysis of 5S ribosomal RNA sequences.
    Manske CL; Chapman DJ
    J Mol Evol; 1987; 26(3):226-51. PubMed ID: 3129569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The evolution of proteins from random amino acid sequences: II. Evidence from the statistical distributions of the lengths of modern protein sequences.
    White SH
    J Mol Evol; 1994 Apr; 38(4):383-94. PubMed ID: 8007006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Felsenstein Phylogenetic Likelihood.
    Posada D; Crandall KA
    J Mol Evol; 2021 Apr; 89(3):134-145. PubMed ID: 33438113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation.
    Yang Z; Goldman N; Friday A
    Mol Biol Evol; 1994 Mar; 11(2):316-24. PubMed ID: 8170371
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimation of evolutionary distances between homologous nucleotide sequences.
    Kimura M
    Proc Natl Acad Sci U S A; 1981 Jan; 78(1):454-8. PubMed ID: 6165991
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relative efficiencies of the maximum parsimony and distance-matrix methods in obtaining the correct phylogenetic tree.
    Sourdis J; Nei M
    Mol Biol Evol; 1988 May; 5(3):298-311. PubMed ID: 3386530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.