These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 7932798)

  • 21. Movement-related cortical potentials.
    Hallett M
    Electromyogr Clin Neurophysiol; 1994; 34(1):5-13. PubMed ID: 8168458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intracranial recordings of movement-related potentials to voluntary saccades.
    Sakamoto A; Lüders H; Burgess R
    J Clin Neurophysiol; 1991 Apr; 8(2):223-33. PubMed ID: 1904887
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cortical activation during fast repetitive finger movements in humans: dipole sources of steady-state movement-related cortical potentials.
    Gerloff C; Uenishi N; Hallett M
    J Clin Neurophysiol; 1998 Nov; 15(6):502-13. PubMed ID: 9881923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Timing function of the frontal cortex in sequential motor and learning tasks.
    Deecke L; Kornhuber HH; Lang W; Lang M; Schreiber H
    Hum Neurobiol; 1985; 4(3):143-54. PubMed ID: 4066425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recording of movement-related potentials from the human cortex.
    Neshige R; Lüders H; Friedman L; Shibasaki H
    Ann Neurol; 1988 Sep; 24(3):439-45. PubMed ID: 3228276
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frontal lobe contribution to voluntary movements in humans.
    Singh J; Knight RT
    Brain Res; 1990 Oct; 531(1-2):45-54. PubMed ID: 2289137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Motor processing after movement execution as revealed by evoked and induced activity.
    Bender S; Oelkers-Ax R; Resch F; Weisbrod M
    Brain Res Cogn Brain Res; 2004 Sep; 21(1):49-58. PubMed ID: 15325412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cortical potentials related to voluntary and passive finger movements recorded from subdural electrodes in humans.
    Lee BI; Lüders H; Lesser RP; Dinner DS; Morris HH
    Ann Neurol; 1986 Jul; 20(1):32-7. PubMed ID: 3740814
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activity of cat parietofrontal neurons during the performance of a voluntary movement.
    Il'icheva TV; Khitrova-Orlova TV; Korenyuk II; Pavlenko VB
    Neurosci Behav Physiol; 1992; 22(4):303-9. PubMed ID: 1528421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Responses of monkey precentral neurones to passive movements and phasic muscle stretch: relevance to man.
    Colebatch JG; Sayer RJ; Porter R; White OB
    Electroencephalogr Clin Neurophysiol; 1990 Feb; 75(2):44-55. PubMed ID: 1688773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Movement-related cortical potentials in aged subjects].
    Feve AP; Bathien N; Rondot P
    Neurophysiol Clin; 1991 Oct; 21(4):281-91. PubMed ID: 1795694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal relationships of EMG changes preceding voluntary movement to premovement cortical potential shifts.
    Tanii K; Sadoyama T; Sameshima M
    Electroencephalogr Clin Neurophysiol; 1987 Nov; 67(5):412-20. PubMed ID: 2444409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effect of S-adenosyl-L-methionine (SAMe) on disturbances in hand movement and delayed response tasks after lesion of motor or prefrontal cortex in the monkey].
    Takahashi J; Nishino H; Ono T
    Nihon Yakurigaku Zasshi; 1986 May; 87(5):507-19. PubMed ID: 3732962
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cortical potentials preceding voluntary finger movement in patients with focal cerebellar lesion.
    Kitamura J; Shabasaki H; Terashi A; Tashima K
    Clin Neurophysiol; 1999 Jan; 110(1):126-32. PubMed ID: 10348331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of slow cortical potentials preceding self-paced hand movements in the monkey.
    Hashimoto S; Gemba H; Sasaki K
    Exp Neurol; 1979 Jul; 65(1):218-29. PubMed ID: 233558
    [No Abstract]   [Full Text] [Related]  

  • 36. A computer-assisted method for averaging movement-related cortical potentials with respect to EMG onset.
    Barrett G; Shibasaki H; Neshige R
    Electroencephalogr Clin Neurophysiol; 1985 Mar; 60(3):276-81. PubMed ID: 2578938
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Motor effects of lesions of precentral gyrus and of lesions sparing this area in monkey.
    SEMMES J; CHOW KL
    AMA Arch Neurol Psychiatry; 1955 May; 73(5):546-56. PubMed ID: 14360872
    [No Abstract]   [Full Text] [Related]  

  • 38. A developmental study of movement-related brain macropotentials during skilled performances.
    Chiarenza G; Papakostopoulos D; Giordana F; Guareschi-Cazzullo A
    Ann N Y Acad Sci; 1984; 425():438-44. PubMed ID: 6588863
    [No Abstract]   [Full Text] [Related]  

  • 39. Movement-related potentials within the hippocampal formation of the monkey.
    Arezzo JC; Tenke CE; Vaughan HG
    Brain Res; 1987 Jan; 401(1):79-86. PubMed ID: 3815095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Movement-Related Potentials Associated with Motor Timing Errors as Determined by Internally Cued Movement Onset.
    Ahn JS; Yoon JH; Kim JJ; Park JY
    Psychiatry Investig; 2021 Jul; 18(7):670-678. PubMed ID: 34265196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.