These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7934250)

  • 1. Determining appropriate models for joint control using surface electrical stimulation of soleus in spinal cord injury.
    Flaherty B; Robinson C; Agarwal G
    Med Biol Eng Comput; 1994 May; 32(3):273-82. PubMed ID: 7934250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of nonlinear model of ankle joint dynamics during electrical stimulation of soleus.
    Flaherty B; Robinson C; Agarwal G
    Med Biol Eng Comput; 1995 May; 33(3 Spec No):430-9. PubMed ID: 7666691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of long-term FES-assisted walking on intrinsic and reflex dynamic stiffness in spastic spinal-cord-injured subjects.
    Mirbagheri MM; Ladouceur M; Barbeau H; Kearney RE
    IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):280-9. PubMed ID: 12611365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal facilitation of spastic stretch reflexes following human spinal cord injury.
    Hornby TG; Kahn JH; Wu M; Schmit BD
    J Physiol; 2006 Mar; 571(Pt 3):593-604. PubMed ID: 16540600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.
    Shields RK; Dudley-Javoroski S; Littmann AE
    J Appl Physiol (1985); 2006 Aug; 101(2):556-65. PubMed ID: 16575026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Length-tension properties of ankle muscles in chronic human spinal cord injury.
    McDonald MF; Kevin Garrison M; Schmit BD
    J Biomech; 2005 Dec; 38(12):2344-53. PubMed ID: 16214482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation parameter optimization for functional electrical stimulation assisted gait in human spinal cord injury using response surface methodology.
    Kim Y; Schmit BD; Youm Y
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):485-94. PubMed ID: 16488061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinguishing active from passive components of ankle plantar flexor stiffness in stroke, spinal cord injury and multiple sclerosis.
    Lorentzen J; Grey MJ; Crone C; Mazevet D; Biering-Sørensen F; Nielsen JB
    Clin Neurophysiol; 2010 Nov; 121(11):1939-51. PubMed ID: 20457538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soleus H-reflex excitability changes in response to sinusoidal hip stretches in the injured human spinal cord.
    Knikou M; Schmit BD; Chaudhuri D; Kay E; Rymer WZ
    Neurosci Lett; 2007 Aug; 423(1):18-23. PubMed ID: 17658691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reflex responses to ankle perturbations during electrical stimulation of muscle: 1. Measurement techniques and preliminary examples.
    Robinson CJ; Flaherty B; Agarwal GC; Gottlieb GL
    Biomed Sci Instrum; 1990; 26():101-5. PubMed ID: 2334751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional sensitivity of stretch reflexes and balance corrections for normal subjects in the roll and pitch planes.
    Carpenter MG; Allum JH; Honegger F
    Exp Brain Res; 1999 Nov; 129(1):93-113. PubMed ID: 10550507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time estimation of FES-induced joint torque with evoked EMG : Application to spinal cord injured patients.
    Li Z; Guiraud D; Andreu D; Benoussaad M; Fattal C; Hayashibe M
    J Neuroeng Rehabil; 2016 Jun; 13(1):60. PubMed ID: 27334441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic and reflex stiffness in normal and spastic, spinal cord injured subjects.
    Mirbagheri MM; Barbeau H; Ladouceur M; Kearney RE
    Exp Brain Res; 2001 Dec; 141(4):446-59. PubMed ID: 11810139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Musculo-skeletal modelling of NMES-evoked knee extension in spinal cord injury.
    Sinclair PJ; Davis GM; Smith RM
    J Biomech; 2006; 39(3):483-92. PubMed ID: 16389088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Musculoskeletal adaptations in chronic spinal cord injury: effects of long-term soleus electrical stimulation training.
    Shields RK; Dudley-Javoroski S
    Neurorehabil Neural Repair; 2007; 21(2):169-79. PubMed ID: 17312092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The efficacy of neuromuscular electrical stimulation with alternating currents in the kilohertz frequency to stimulate gait rhythm in rats following spinal cord injury.
    Kanchiku T; Suzuki H; Imajo Y; Yoshida Y; Moriya A; Suetomi Y; Nishida N; Takahashi Y; Taguchi T
    Biomed Eng Online; 2015 Oct; 14():98. PubMed ID: 26510623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical and reflex responses to joint perturbations during electrical stimulation of muscle: instrumentation and measurement techniques.
    Robinson CJ; Flaherty B; Fehr L; Agarwal GC; Harris GF; Gottlieb GL
    Med Biol Eng Comput; 1994 May; 32(3):261-72. PubMed ID: 7934249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of shank muscles during functional electrical stimulation cycling increases ankle excursion in individuals with spinal cord injury.
    Fornusek C; Davis GM; Baek I
    Arch Phys Med Rehabil; 2012 Nov; 93(11):1930-6. PubMed ID: 22634232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Afferent mechanisms for the reflex response to imposed ankle movement in chronic spinal cord injury.
    Schmit BD; Benz EN; Rymer WZ
    Exp Brain Res; 2002 Jul; 145(1):40-9. PubMed ID: 12070743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.