These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 793471)

  • 1. [The inhibition of post-exponential growth in "Saccharomyces cerevisiae" by L-lysine (author's transl)].
    Bourgeois CM
    Ann Microbiol (Paris); 1976; 127B(2):151-66. PubMed ID: 793471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lysine biosynthesis in Saccharomyces cerevisiae: mechanism of alpha-aminoadipate reductase (Lys2) involves posttranslational phosphopantetheinylation by Lys5.
    Ehmann DE; Gehring AM; Walsh CT
    Biochemistry; 1999 May; 38(19):6171-7. PubMed ID: 10320345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth inhibition by alpha-aminoadipate and reversal of the effect by specific amino acid supplements in Saccharomyces cerevisiae.
    Winston MK; Bhattacharjee JK
    J Bacteriol; 1982 Nov; 152(2):874-9. PubMed ID: 6752121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysine excretion by S-(2-aminoethyl)L-cysteine resistant mutants of Bacillus subtilis.
    Chaudhuri A; Mishra AK; Nanda G
    Acta Microbiol Pol; 1983; 32(1):37-45. PubMed ID: 6194664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Lysine and arginine requirement of "Ustilago cynodontis" 4001 yeast-like cells. I. --Growth in the presence and in the absence of lysine (author's transl)].
    Delavier-Klutchko C; Ebersolt C; Daniel C
    Ann Microbiol (Paris); 1976 Apr; 127(3):353-66. PubMed ID: 952440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Lysine overproduction mutations in the yeast Saccharomyces cerevisiae and its transfection into industrial Yeast strains ].
    Stepanova VP; Davydenko SG; Donich VN; Smolina SS; Kurennaia ON; Iarovoĭ BF
    Genetika; 2001 Apr; 37(4):570-3. PubMed ID: 11421134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and adaptation of Saccharomyces cerevisiae at different cadmium concentrations.
    Minney SF; Quirk AV
    Microbios; 1985; 42(167):37-44. PubMed ID: 3889554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and biochemical characterization of Saccharomyces cerevisiae mutants resistant to trifluoroleucine.
    Casalone E; Fia G; Barberio C; Cavalieri D; Turbanti L; Polsinelli M
    Res Microbiol; 1997; 148(7):613-23. PubMed ID: 9765846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Saccharomyces cerevisiae mutants, producers of lysine on an ethanol medium].
    Vikhanskiĭ IuD
    Genetika; 1982 Feb; 18(2):316-8. PubMed ID: 6800881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased cellular permeability to H2O2 protects Saccharomyces cerevisiae cells in stationary phase against oxidative stress.
    Sousa-Lopes A; Antunes F; Cyrne L; Marinho HS
    FEBS Lett; 2004 Dec; 578(1-2):152-6. PubMed ID: 15581633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of phospholipid enrichment on nystatin action: differences in antibiotic sensitivity between in vivo and in vitro conditions.
    Rao TV; Das S; Prasad R
    Microbios; 1985; 42(169-170):145-53. PubMed ID: 3929027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The isolation and characterization of Ni2+ resistant mutants of Saccharomyces cerevisiae.
    Joho M; Imada Y; Murayama T
    Microbios; 1987; 51(208-209):183-90. PubMed ID: 3316939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive determination of L-lysine with a new amperometric microbial biosensor based on Saccharomyces cerevisiae yeast cells.
    Akyilmaz E; Erdoğan A; Oztürk R; Yaşa I
    Biosens Bioelectron; 2007 Jan; 22(6):1055-60. PubMed ID: 16759846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrate regulation of alpha-aminoadipate reductase formation and lysine inhibition of its activity in Penicillium chrysogenum and Acremonium chrysogenum.
    Hijarrubia MJ; Aparicio JF; Martín JF
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):270-7. PubMed ID: 12111157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic analysis of growth inhibition by GAL4-L kappa B-alpha in Saccharomyces cerevisiae.
    Morin PJ; Downs JA; Snodgrass AM; Gilmore TD
    Cell Growth Differ; 1995 Jul; 6(7):789-98. PubMed ID: 7547500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model of Saccharomyces cerevisiae growth in response to cadmium toxicity.
    Hietala KA; Lynch ML; Allshouse JC; Johns CJ; Roane TM
    J Basic Microbiol; 2006; 46(3):196-202. PubMed ID: 16721879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LYS2 gene and its mutation in Kluyveromyces lactis.
    Alberti A; Ferrero I; Lodi T
    Yeast; 2003 Oct; 20(14):1171-5. PubMed ID: 14587101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. alpha-Aminoadipate as a primary nitrogen source for Saccharomyces cerevisiae mutants.
    Zaret KS; Sherman F
    J Bacteriol; 1985 May; 162(2):579-83. PubMed ID: 3921525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of alpha-aminoadipate and lysine as sole nitrogen source by Schizosaccharomyces pombe and selected pathogenic fungi.
    Ye ZH; Garrad RC; Winston MK; Bhattacharjee JK
    J Basic Microbiol; 1991; 31(2):149-56. PubMed ID: 1908900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.