These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 7934816)

  • 1. Osmostress response of the yeast Saccharomyces.
    Mager WH; Varela JC
    Mol Microbiol; 1993 Oct; 10(2):253-8. PubMed ID: 7934816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmostress response of the yeast Saccharomyces.
    Mager WH; Varela JCS
    Mol Microbiol; 1993 Oct; 10(2):253-258. PubMed ID: 28776856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fungal STRE-element-binding protein Seb1 is involved but not essential for glycerol dehydrogenase (gld1) gene expression and glycerol accumulation in Trichoderma atroviride during osmotic stress.
    Seidl V; Seiboth B; Karaffa L; Kubicek CP
    Fungal Genet Biol; 2004 Dec; 41(12):1132-40. PubMed ID: 15531216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward a genomic view of the gene expression program regulated by osmostress in yeast.
    Martínez-Montañés F; Pascual-Ahuir A; Proft M
    OMICS; 2010 Dec; 14(6):619-27. PubMed ID: 20726780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The molecular chaperone Hsp90 is required for high osmotic stress response in Saccharomyces cerevisiae.
    Yang XX; Maurer KC; Molanus M; Mager WH; Siderius M; van der Vies SM
    FEMS Yeast Res; 2006 Mar; 6(2):195-204. PubMed ID: 16487343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmoresponsive proteins and functional assessment strategies in Saccharomyces cerevisiae.
    Blomberg A
    Electrophoresis; 1997 Aug; 18(8):1429-40. PubMed ID: 9298657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.
    Kawahata M; Masaki K; Fujii T; Iefuji H
    FEMS Yeast Res; 2006 Sep; 6(6):924-36. PubMed ID: 16911514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic regulation rather than de novo enzyme synthesis dominates the osmo-adaptation of yeast.
    Bouwman J; Kiewiet J; Lindenbergh A; van Eunen K; Siderius M; Bakker BM
    Yeast; 2011 Jan; 28(1):43-53. PubMed ID: 20803479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaining insight into the response logic of Saccharomyces cerevisiae to heat shock by combining expression profiles with metabolic pathways.
    Ye Y; Zhu Y; Pan L; Li L; Wang X; Lin Y
    Biochem Biophys Res Commun; 2009 Jul; 385(3):357-62. PubMed ID: 19463789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R; Bruno-Bárcena JM; Matallana E
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae.
    Mouillon JM; Persson BL
    FEMS Yeast Res; 2006 Mar; 6(2):171-6. PubMed ID: 16487340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative model of the response of yeast to osmotic shock.
    Klipp E; Nordlander B; Krüger R; Gennemark P; Hohmann S
    Nat Biotechnol; 2005 Aug; 23(8):975-82. PubMed ID: 16025103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast cells display a regulatory mechanism in response to methylglyoxal.
    Aguilera J; Prieto JA
    FEMS Yeast Res; 2004 Mar; 4(6):633-41. PubMed ID: 15040952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial stimulus perception and signal transduction: response to osmotic stress.
    Krämer R
    Chem Rec; 2010 Aug; 10(4):217-29. PubMed ID: 20607761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that the Saccharomyces cerevisiae CIF1 (GGS1/TPS1) gene modulates heat shock response positively.
    Hazell BW; Nevalainen H; Attfield PV
    FEBS Lett; 1995 Dec; 377(3):457-60. PubMed ID: 8549775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell integrity signaling activation in response to hyperosmotic shock in yeast.
    García-Rodríguez LJ; Valle R; Durán A; Roncero C
    FEBS Lett; 2005 Nov; 579(27):6186-90. PubMed ID: 16243316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of OS-2 MAP kinase-dependent genes induced in response to osmotic stress, antifungal agent fludioxonil, and heat shock in Neurospora crassa.
    Noguchi R; Banno S; Ichikawa R; Fukumori F; Ichiishi A; Kimura M; Yamaguchi I; Fujimura M
    Fungal Genet Biol; 2007 Mar; 44(3):208-18. PubMed ID: 16990038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a novel gene family involved in osmotic stress response in Caenorhabditis elegans.
    Wheeler JM; Thomas JH
    Genetics; 2006 Nov; 174(3):1327-36. PubMed ID: 16980399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide expression profiling of the osmoadaptation response of Debaryomyces hansenii.
    Gonzalez NA; Vázquez A; Ortiz Zuazaga HG; Sen A; Olvera HL; Peña de Ortiz S; Govind NS
    Yeast; 2009 Feb; 26(2):111-24. PubMed ID: 19235772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cesium chloride sensing and signaling in Saccharomyces cerevisiae: an interplay among the HOG and CWI MAPK pathways and the transcription factor Yaf9.
    Casagrande V; Del Vescovo V; Militti C; Mangiapelo E; Frontali L; Negri R; Bianchi MM
    FEMS Yeast Res; 2009 May; 9(3):400-10. PubMed ID: 19220477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.