These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 7934816)

  • 21. Stress-tolerance of baker's-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance.
    Shima J; Takagi H
    Biotechnol Appl Biochem; 2009 May; 53(Pt 3):155-64. PubMed ID: 19476439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The yeast osmostress response is carbon source dependent.
    Babazadeh R; Lahtvee PJ; Adiels CB; Goksör M; Nielsen JB; Hohmann S
    Sci Rep; 2017 Apr; 7(1):990. PubMed ID: 28428553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Induction of desiccation tolerance by osmotic treatment in Saccharomyces uvarum var. carlsbergensis.
    Eleutherio EC; Maia FM; Pereira MD; Degré R; Cameron D; Panek AD
    Can J Microbiol; 1997 May; 43(5):495-8. PubMed ID: 9165704
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial function is an inducible determinant of osmotic stress adaptation in yeast.
    Pastor MM; Proft M; Pascual-Ahuir A
    J Biol Chem; 2009 Oct; 284(44):30307-17. PubMed ID: 19720830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of the kinetics of osmotic pressure variation on yeast viability.
    Gervais P; Marechal PA; Molin P
    Biotechnol Bioeng; 1992 Dec; 40(11):1435-9. PubMed ID: 18601101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding.
    Miermont A; Waharte F; Hu S; McClean MN; Bottani S; Léon S; Hersen P
    Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5725-30. PubMed ID: 23493557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Imperfect crowding adaptation of mammalian cells towards osmotic stress and its modulation by osmolytes.
    Gnutt D; Brylski O; Edengeiser E; Havenith M; Ebbinghaus S
    Mol Biosyst; 2017 Oct; 13(11):2218-2221. PubMed ID: 28929156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Osmosensing and osmoregulation in unicellular eukaryotes.
    Suescún-Bolívar LP; Thomé PE
    World J Microbiol Biotechnol; 2015 Mar; 31(3):435-43. PubMed ID: 25638456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Osmosensing in plants: mystery unveiled.
    Sharma S; Prasad A; Prasad M
    Trends Plant Sci; 2023 Jul; 28(7):740-742. PubMed ID: 37061375
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptive changes in yeast membranes: catabolite repression and oxygen.
    Lloyd D; Cartledge TG; Jenkins RO
    Biochem Soc Trans; 1983 Aug; 11(4):339-40. PubMed ID: 6617968
    [No Abstract]   [Full Text] [Related]  

  • 31. Data-driven identification of inherent features of eukaryotic stress-responsive genes.
    Latorre P; Böttcher R; Nadal-Ribelles M; Li CH; Solé C; Martínez-Cebrián G; Boutros PC; Posas F; de Nadal E
    NAR Genom Bioinform; 2022 Mar; 4(1):lqac018. PubMed ID: 35265837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of H Excretion : EFFECTS OF OSMOTIC SHOCK.
    Rubinstein B
    Plant Physiol; 1982 Apr; 69(4):939-44. PubMed ID: 16662323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The ongoing search for the molecular basis of plant osmosensing.
    Haswell ES; Verslues PE
    J Gen Physiol; 2015 May; 145(5):389-94. PubMed ID: 25870206
    [No Abstract]   [Full Text] [Related]  

  • 34. Perspectives on: The response to osmotic challenges.
    Andersen OS
    J Gen Physiol; 2015 May; 145(5):371-2. PubMed ID: 25870208
    [No Abstract]   [Full Text] [Related]  

  • 35. Response to hyperosmotic stress.
    Saito H; Posas F
    Genetics; 2012 Oct; 192(2):289-318. PubMed ID: 23028184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation.
    Zhu J; Sova P; Xu Q; Dombek KM; Xu EY; Vu H; Tu Z; Brem RB; Bumgarner RE; Schadt EE
    PLoS Biol; 2012; 10(4):e1001301. PubMed ID: 22509135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Population size drives industrial Saccharomyces cerevisiae alcoholic fermentation and is under genetic control.
    Albertin W; Marullo P; Aigle M; Dillmann C; de Vienne D; Bely M; Sicard D
    Appl Environ Microbiol; 2011 Apr; 77(8):2772-84. PubMed ID: 21357433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. mRNA stability changes precede changes in steady-state mRNA amounts during hyperosmotic stress.
    Molin C; Jauhiainen A; Warringer J; Nerman O; Sunnerhagen P
    RNA; 2009 Apr; 15(4):600-14. PubMed ID: 19223440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rck2 is required for reprogramming of ribosomes during oxidative stress.
    Swaminathan S; Masek T; Molin C; Pospisek M; Sunnerhagen P
    Mol Biol Cell; 2006 Mar; 17(3):1472-82. PubMed ID: 16381815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ssk1p response regulator binding surface on histidine-containing phosphotransfer protein Ypd1p.
    Porter SW; Xu Q; West AH
    Eukaryot Cell; 2003 Feb; 2(1):27-33. PubMed ID: 12582120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.