BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 7934848)

  • 1. Transaldolase mutants in the yeast Kluyveromyces lactis provide evidence that glucose can be metabolized through the pentose phosphate pathway.
    Jacoby J; Hollenberg CP; Heinisch JJ
    Mol Microbiol; 1993 Nov; 10(4):867-76. PubMed ID: 7934848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular genetics of phosphofructokinase in the yeast Kluyveromyces lactis.
    Heinisch J; Kirchrath L; Liesen T; Vogelsang K; Hollenberg CP
    Mol Microbiol; 1993 May; 8(3):559-70. PubMed ID: 8326866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of the Kluyveromyces lactis GGS1 gene causes inability to grow on glucose and fructose and is suppressed by mutations that reduce sugar uptake.
    Luyten K; de Koning W; Tesseur I; Ruiz MC; Ramos J; Cobbaert P; Thevelein JM; Hohmann S
    Eur J Biochem; 1993 Oct; 217(2):701-13. PubMed ID: 8223613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular analysis of the structural gene for yeast transaldolase.
    Schaaff I; Hohmann S; Zimmermann FK
    Eur J Biochem; 1990 Mar; 188(3):597-603. PubMed ID: 2185015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.
    Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S
    Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A phosphoglucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis.
    Goffrini P; Wésolowski-Louvel M; Ferrero I
    Mol Gen Genet; 1991 Sep; 228(3):401-9. PubMed ID: 1896011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pentose-phosphate pathway in Saccharomyces cerevisiae: analysis of deletion mutants for transketolase, transaldolase, and glucose 6-phosphate dehydrogenase.
    Schaaff-Gerstenschläger I; Zimmermann FK
    Curr Genet; 1993 Nov; 24(5):373-6. PubMed ID: 8299150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress.
    Juhnke H; Krems B; Kötter P; Entian KD
    Mol Gen Genet; 1996 Sep; 252(4):456-64. PubMed ID: 8879247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isocitrate lyase of the yeast Kluyveromyces lactis is subject to glucose repression but not to catabolite inactivation.
    López ML; Redruello B; Valdés E; Moreno F; Heinisch JJ; Rodicio R
    Curr Genet; 2004 Jan; 44(6):305-16. PubMed ID: 14569415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LEU2 gene homolog in Kluyveromyces lactis.
    Zhang YP; Chen XJ; Li YY; Fukuhara H
    Yeast; 1992 Sep; 8(9):801-4. PubMed ID: 1441757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KlSEC53 is an essential Kluyveromyces lactis gene and is homologous with the SEC53 gene of Saccharomyces cerevisiae.
    Staneva D; Uccelletti D; Farina F; Venkov P; Palleschi C
    Yeast; 2004 Jan; 21(1):41-51. PubMed ID: 14745781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KlROM2 encodes an essential GEF homologue in Kluyveromyces lactis.
    Lorberg A; Schmitz HP; Gengenbacher U; Heinisch JJ
    Yeast; 2003 May; 20(7):611-24. PubMed ID: 12734799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the first fungal NADP-GAPDH from Kluyveromyces lactis.
    Verho R; Richard P; Jonson PH; Sundqvist L; Londesborough J; Penttilä M
    Biochemistry; 2002 Nov; 41(46):13833-8. PubMed ID: 12427047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and analysis of the Kluyveromyces lactis TRP1 gene: a chromosomal locus flanked by genes encoding inorganic pyrophosphatase and histone H3.
    Stark MJ; Milner JS
    Yeast; 1989; 5(1):35-50. PubMed ID: 2538971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-affinity glucose carrier gene LGT1 of Saccharomyces cerevisiae, a homologue of the Kluyveromyces lactis RAG1 gene.
    Prior C; Fukuhara H; Blaisonneau J; Wesolowski-Louvel M
    Yeast; 1993 Dec; 9(12):1373-7. PubMed ID: 8154188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The KlGpa1 gene encodes a G-protein alpha subunit that is a positive control element in the mating pathway of the budding yeast Kluyveromyces lactis.
    Saviñón-Tejeda AL; Ongay-Larios L; Valdés-Rodríguez J; Coria R
    J Bacteriol; 2001 Jan; 183(1):229-34. PubMed ID: 11114921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of mutations in hexose-transporter genes on glucose repression in Kluyveromyces lactis.
    Weirich J; Goffrini P; Kuger P; Ferrero I; Breunig KD
    Eur J Biochem; 1997 Oct; 249(1):248-57. PubMed ID: 9363776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and sequence analysis of a gene from the linear DNA plasmid pPacl-2 of Pichia acaciae that shows similarity to a killer toxin gene of Kluyveromyces lactis.
    Bolen PL; Eastman EM; Cihak PL; Hayman GT
    Yeast; 1994 Mar; 10(3):403-14. PubMed ID: 8017110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysine144 is essential for the catalytic activity of Saccharomyces cerevisiae transaldolase.
    Miosga T; Schaaff-Gerstenschlager I; Franken E; Zimmermann FK
    Yeast; 1993 Nov; 9(11):1241-9. PubMed ID: 8109173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose uptake in Kluyveromyces lactis: role of the HGT1 gene in glucose transport.
    Billard P; Ménart S; Blaisonneau J; Bolotin-Fukuhara M; Fukuhara H; Wésolowski-Louvel M
    J Bacteriol; 1996 Oct; 178(20):5860-6. PubMed ID: 8830679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.