These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 7934922)

  • 21. Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I.
    Yao VJ; Spudich JL
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11915-9. PubMed ID: 1465418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. His166 is critical for active-site proton transfer and phototaxis signaling by sensory rhodopsin I.
    Zhang XN; Spudich JL
    Biophys J; 1997 Sep; 73(3):1516-23. PubMed ID: 9284318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional model of sensory rhodopsin I reveals important restraints between the protein and the chromophore.
    Lin SL; Yan B
    Protein Eng; 1997 Mar; 10(3):197-206. PubMed ID: 9153084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensory rhodopsin I photocycle intermediate SRI380 contains 13-cis retinal bound via an unprotonated Schiff base.
    Haupts U; Eisfeld W; Stockburger M; Oesterhelt D
    FEBS Lett; 1994 Dec; 356(1):25-9. PubMed ID: 7988713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Different modes of proton translocation by sensory rhodopsin I.
    Haupts U; Bamberg E; Oesterhelt D
    EMBO J; 1996 Apr; 15(8):1834-41. PubMed ID: 8617229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid high-yield purification and liposome reconstitution of polyhistidine-tagged sensory rhodopsin I.
    Krebs MP; Spudich EN; Spudich JL
    Protein Expr Purif; 1995 Dec; 6(6):780-8. PubMed ID: 8746630
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional studies of the gvpACNO operon of Halobacterium salinarium reveal that the GvpC protein shapes gas vesicles.
    Offner S; Wanner G; Pfeifer F
    J Bacteriol; 1996 Apr; 178(7):2071-8. PubMed ID: 8606186
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Homologous bacterio-opsin-encoding gene expression via site-specific vector integration.
    Ferrando E; Schweiger U; Oesterhelt D
    Gene; 1993 Mar; 125(1):41-7. PubMed ID: 8383625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signal transduction in the archaeon Halobacterium salinarium is processed through three subfamilies of 13 soluble and membrane-bound transducer proteins.
    Zhang W; Brooun A; McCandless J; Banda P; Alam M
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4649-54. PubMed ID: 8643458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The archaebacterial membrane protein bacterio-opsin is expressed and N-terminally processed in the yeast Saccharomyces cerevisiae.
    Lang-Hinrichs C; Queck I; Büldt G; Stahl U; Hildebrandt V
    Mol Gen Genet; 1994 Jul; 244(2):183-8. PubMed ID: 8052237
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional expression of His-tagged sensory rhodopsin I in Escherichia coli.
    Schmies G; Chizhov I; Engelhard M
    FEBS Lett; 2000 Jan; 466(1):67-9. PubMed ID: 10648814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Residue replacements of buried aspartyl and related residues in sensory rhodopsin I: D201N produces inverted phototaxis signals.
    Olson KD; Zhang XN; Spudich JL
    Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3185-9. PubMed ID: 7724537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The specificity of interaction of archaeal transducers with their cognate sensory rhodopsins is determined by their transmembrane helices.
    Zhang XN; Zhu J; Spudich JL
    Proc Natl Acad Sci U S A; 1999 Feb; 96(3):857-62. PubMed ID: 9927658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural changes of sensory rhodopsin I and its transducer protein are dependent on the protonated state of Asp76.
    Furutani Y; Takahashi H; Sasaki J; Sudo Y; Spudich JL; Kandori H
    Biochemistry; 2008 Mar; 47(9):2875-83. PubMed ID: 18220358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Downstream coding region determinants of bacterio-opsin, muscarinic acetylcholine receptor and adrenergic receptor expression in Halobacterium salinarum.
    Bartus CL; Jaakola VP; Reusch R; Valentine HH; Heikinheimo P; Levay A; Potter LT; Heimo H; Goldman A; Turner GJ
    Biochim Biophys Acta; 2003 Feb; 1610(1):109-23. PubMed ID: 12586385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of a halobacterial gene affecting bacterio-opsin gene expression.
    Betlach M; Friedman J; Boyer HW; Pfeifer F
    Nucleic Acids Res; 1984 Oct; 12(20):7949-59. PubMed ID: 6093059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An efficient system for the synthesis of bacteriorhodopsin in Halobacterium halobium.
    Ni BF; Chang M; Duschl A; Lanyi J; Needleman R
    Gene; 1990 May; 90(1):169-72. PubMed ID: 2379834
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of a second gene involved in bacterio-opsin gene expression in a halophilic archaebacterium.
    Leong D; Pfeifer F; Boyer H; Betlach M
    J Bacteriol; 1988 Oct; 170(10):4903-9. PubMed ID: 3170488
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation.
    Ihara K; Umemura T; Katagiri I; Kitajima-Ihara T; Sugiyama Y; Kimura Y; Mukohata Y
    J Mol Biol; 1999 Jan; 285(1):163-74. PubMed ID: 9878396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methyl-accepting protein associated with bacterial sensory rhodopsin I.
    Spudich EN; Hasselbacher CA; Spudich JL
    J Bacteriol; 1988 Sep; 170(9):4280-5. PubMed ID: 3410829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.