These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7935009)

  • 1. Microinjection of antisense oligonucleotides to assess G-protein subunit function.
    Kleuss C; Schultz G; Wittig B
    Methods Enzymol; 1994; 237():345-55. PubMed ID: 7935009
    [No Abstract]   [Full Text] [Related]  

  • 2. Microinjection of in vitro transcribed RNA and antisense oligonucleotides in mouse oocytes and early embryos to study the gain- and loss-of-function of genes.
    Kola I; Sumarsono SH
    Methods Mol Biol; 1995; 37():135-49. PubMed ID: 7780502
    [No Abstract]   [Full Text] [Related]  

  • 3. Microinjection of antisense oligonucleotides and electrophysiological recording of whole-cell currents as tools to identify specific G-protein subtypes coupling hormone receptors to voltage-gated calcium channels.
    Degtiar VE; Wittig B; Schultz G; Kalkbrenner F
    Methods Mol Biol; 1998; 84():123-36. PubMed ID: 9666445
    [No Abstract]   [Full Text] [Related]  

  • 4. Antisense pharmacodynamics: critical issues in the transport and delivery of antisense oligonucleotides.
    Juliano RL; Alahari S; Yoo H; Kole R; Cho M
    Pharm Res; 1999 Apr; 16(4):494-502. PubMed ID: 10227702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response to lysophosphatidic acid in Xenopus oocytes and its rapid desensitization: the role of Gq and Go G-protein families.
    Van-Ham II; Lupu-Meiri M; Tayer M; Shapira H; Oron Y
    J Cell Physiol; 2004 Jul; 200(1):125-33. PubMed ID: 15137065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microinjecting antisense sequences into oocytes.
    Sallés FJ; Richards WG; Huarte J; Vassalli JD; Strickland S
    Methods Enzymol; 1993; 225():351-61. PubMed ID: 7694042
    [No Abstract]   [Full Text] [Related]  

  • 7. Use of antisense oligonucleotides to study Rab function in vivo.
    Huber LA; Dupree P; Dotti CG
    Methods Enzymol; 1995; 257():302-12. PubMed ID: 8583934
    [No Abstract]   [Full Text] [Related]  

  • 8. Microinjection of in vitro transcribed RNA and antisense oligonucleotides in mouse oocytes and early embryos to study the gain- and loss-of-function of genes.
    Kola I; Sumarsono SH
    Mol Biotechnol; 1996 Oct; 6(2):191-9. PubMed ID: 8970172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recruiting the 2-5A system for antisense therapeutics.
    Torrence PF; Xiao W; Li G; Cramer H; Player MR; Silverman RH
    Antisense Nucleic Acid Drug Dev; 1997 Jun; 7(3):203-6. PubMed ID: 9212911
    [No Abstract]   [Full Text] [Related]  

  • 10. Nuclear application of antisense oligonucleotides by microinjection and ballistomagnetic transfer to identify G protein heterotrimers activating phospholipase C.
    Kalkbrenner F; Dippel E; Schroff M; Wittig B; Schultz G
    Methods Mol Biol; 1997; 83():203-16. PubMed ID: 9210147
    [No Abstract]   [Full Text] [Related]  

  • 11. Functional coupling of the 5-HT2C serotonin receptor to G proteins in Xenopus oocytes.
    Chen Y; Baez M; Yu L
    Neurosci Lett; 1994 Sep; 179(1-2):100-2. PubMed ID: 7531308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microinjection of morpholino oligos and RNAs in sea squirt (Ciona) embryos.
    Christiaen L; Wagner E; Shi W; Levine M
    Cold Spring Harb Protoc; 2009 Dec; 2009(12):pdb.prot5347. PubMed ID: 20150094
    [No Abstract]   [Full Text] [Related]  

  • 13. Selectivity in signal transduction determined by gamma subunits of heterotrimeric G proteins.
    Kleuss C; Scherübl H; Hescheler J; Schultz G; Wittig B
    Science; 1993 Feb; 259(5096):832-4. PubMed ID: 8094261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux) technology.
    Lin W; Cormier M; Samiee A; Griffin A; Johnson B; Teng CL; Hardee GE; Daddona PE
    Pharm Res; 2001 Dec; 18(12):1789-93. PubMed ID: 11785702
    [No Abstract]   [Full Text] [Related]  

  • 15. Differential blockade of morphine and morphine-6 beta-glucuronide analgesia by antisense oligodeoxynucleotides directed against MOR-1 and G-protein alpha subunits in rats.
    Rossi GC; Standifer KM; Pasternak GW
    Neurosci Lett; 1995 Sep; 198(2):99-102. PubMed ID: 8592651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antisense therapeutics.
    Crooke ST
    Biotechnol Genet Eng Rev; 1998; 15():121-57. PubMed ID: 9573607
    [No Abstract]   [Full Text] [Related]  

  • 17. Use of antisense oligodeoxynucleotides and monospecific antisera to inhibit G-protein gene expression in cultured neurons.
    Buckley NJ; ffrench-Mullen J; Caulfield M
    Biochem Soc Trans; 1995 Feb; 23(1):137-41. PubMed ID: 7758701
    [No Abstract]   [Full Text] [Related]  

  • 18. A heterotrimeric G protein complex couples the muscarinic m1 receptor to phospholipase C-beta.
    Dippel E; Kalkbrenner F; Wittig B; Schultz G
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1391-6. PubMed ID: 8643642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromedin B receptor, expressed in Xenopus laevis oocytes, selectively couples to G alpha q and not G alpha 11.
    Shapira H; Way J; Lipinsky D; Oron Y; Battey JF
    FEBS Lett; 1994 Jul; 348(1):89-92. PubMed ID: 8026589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity of antisense oligonucleotides in vivo.
    Woolf TM; Melton DA; Jennings CG
    Proc Natl Acad Sci U S A; 1992 Aug; 89(16):7305-9. PubMed ID: 1380154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.