These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 7935214)

  • 1. A superconducting cyclotron for neutron radiation therapy.
    Maughan RL; Powers WE; Blosser HG
    Med Phys; 1994 Jun; 21(6):779-85. PubMed ID: 7935214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical characteristics of a clinical d(48.5)+Be neutron therapy beam produced by a superconducting cyclotron.
    Maughan RL; Yudelev M
    Med Phys; 1995 Sep; 22(9):1459-65. PubMed ID: 8531873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multirod collimator for neutron therapy.
    Maughan RL; Blosser GF; Blosser EB; Yudelev M; Forman JD; Blosser HG; Powers WE
    Int J Radiat Oncol Biol Phys; 1996 Jan; 34(2):411-20. PubMed ID: 8567343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculations of x-ray and neutron transmission through multirod arrays.
    Maughan RL; Kruger DG; Blosser GF; Blosser HG
    Med Phys; 1995 Apr; 22(4):427-33. PubMed ID: 7609723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryogenic aspects of the operation of a superconducting cyclotron-based neutron therapy facility.
    Maughan RL; Blosser HG; Blosser EB; McEnhill K
    Bull Cancer Radiother; 1996; 83 Suppl():146s-52s. PubMed ID: 8949768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Clatterbridge high-energy neutron therapy facility: specification and performance.
    Bonnett DE; Blake SW; Shaw JE; Bewley DK
    Br J Radiol; 1988 Jan; 61(721):38-46. PubMed ID: 3126848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design considerations for a computer controlled multileaf collimator for the Harper Hospital fast neutron therapy facility.
    Maughan RL; Yudelev M; Aref A; Chuba PJ; Forman J; Blosser EJ; Horste T
    Med Phys; 2002 Apr; 29(4):499-508. PubMed ID: 11991121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shielding and radiation safety around a superconducting cyclotron neutron therapy facility.
    Yudelev M; Maughan RL; Dunlap K
    Health Phys; 1995 Jul; 69(1):130-6. PubMed ID: 7790207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of neutron induced radioactivity in the concrete walls of a PET cyclotron vault room with MCNPX.
    Martínez-Serrano JJ; Díez de los Ríos A
    Med Phys; 2010 Nov; 37(11):6015-21. PubMed ID: 21158313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of thermal neutron fluence distribution with use of 23Na radioactivation around a medical compact cyclotron.
    Fujibuchi T; Yamaguchi I; Kasahara T; Iimori T; Masuda Y; Kimura K; Watanabe H; Isobe T; Sakae T
    Radiol Phys Technol; 2009 Jul; 2(2):159-65. PubMed ID: 20821115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutron measurements in the vicinity of a self-shielded PET cyclotron.
    Hertel NE; Shannon MP; Wang ZL; Valenzano MP; Mengesha W; Crowe RJ
    Radiat Prot Dosimetry; 2004; 108(3):255-61. PubMed ID: 15031447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutron spectra due (13)N production in a PET cyclotron.
    Benavente JA; Vega-Carrillo HR; Lacerda MA; Fonseca TC; Faria FP; da Silva TA
    Appl Radiat Isot; 2015 May; 99():20-4. PubMed ID: 25699664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of the University of Washington Neutron Radiotherapy Facility for optimization of neutron capture enhanced fast-neutron therapy.
    Nigg DW; Wemple CA; Risler R; Hartwell JK; Harker YD; Laramore GE
    Med Phys; 2000 Feb; 27(2):359-67. PubMed ID: 10718140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ESTIMATION OF THERMAL & EPITHERMAL NEUTRON FLUX AND GAMMA DOSE DISTRIBUTION IN A MEDICAL CYCLOTRON FACILITY FOR RADIATION PROTECTION PURPOSES USING GOLD FOILS AND GATE 9.
    Abolaban FA; Alawi MA; Taha EM; Elmoujarkach E; Banoqitah EM; Alhawsawi AM; De Maio P; Lopopolo G; Tolomeo A; Dimiccoli V; Nisbet A
    Radiat Prot Dosimetry; 2021 May; 193(3-4):176-184. PubMed ID: 33823534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The multileaf collimator for fast neutron therapy at Louvain-la-Neuve.
    Denis JM; Meulders JP; Lannoye E; Longrée Y; Ryckewaert G; Richard F; Vynckier S; Wambersie A
    Bull Cancer Radiother; 1996; 83 Suppl():160s-9s. PubMed ID: 8949771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Build-up and depth-dose characteristics of different fast neutron beams relevant for radiotherapy.
    Mijnheer BJ
    Br J Radiol; 1978 Feb; 51(602):122-6. PubMed ID: 414808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of thermal neutron flux around a PET cyclotron.
    Ogata Y; Ishigure N; Mochizuki S; Ito K; Hatano K; Abe J; Miyahara H; Masumoto K; Nakamura H
    Health Phys; 2011 May; 100 Suppl 2():S60-6. PubMed ID: 21451309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GE PETtrace cyclotron as a neutron source for boron neutron capture therapy.
    Bosko A; Zhilchenkov D; Reece WD
    Appl Radiat Isot; 2004 Nov; 61(5):1057-62. PubMed ID: 15308192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attenuation and activation characteristics of steel and tungsten and the suitability of these materials for use in a fast neutron multileaf collimator.
    Maughan RL; Yudelev M; Forman JD; Williams SB; Gries D; Fletcher TM; Chapman W; Blosser EJ; Horste T
    Med Phys; 2001 Jun; 28(6):1006-9. PubMed ID: 11439469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutron production from a mobile linear accelerator operating in electron mode for intraoperative radiation therapy.
    Loi G; Dominietto M; Cannillo B; Ciocca M; Krengli M; Mones E; Negri E; Brambilla M
    Phys Med Biol; 2006 Feb; 51(3):695-702. PubMed ID: 16424589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.