These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 7935216)

  • 1. Reducing electron contamination for photon beam-quality specification.
    Li XA; Rogers DW
    Med Phys; 1994 Jun; 21(6):791-7. PubMed ID: 7935216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining tissue-phantom ratios to provide a beam-quality specifier for flattening filter free photon beams.
    Dalaryd M; Knöös T; Ceberg C
    Med Phys; 2014 Nov; 41(11):111716. PubMed ID: 25370630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beam quality specification for photon beam dosimetry.
    Kosunen A; Rogers DW
    Med Phys; 1993; 20(4):1181-8. PubMed ID: 8413028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo-based investigations on the impact of removing the flattening filter on beam quality specifiers for photon beam dosimetry.
    Czarnecki D; Poppe B; Zink K
    Med Phys; 2017 Jun; 44(6):2569-2580. PubMed ID: 28369978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technical Note: On the impact of the incident electron beam energy on the primary dose component of flattening filter free photon beams.
    Kuess P; Georg D; Palmans H; Lechner W
    Med Phys; 2016 Aug; 43(8):4507. PubMed ID: 27487867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Which accelerator photon beams are "clinic-like" for reference dosimetry purposes?
    Kalach NI; Rogers DW
    Med Phys; 2003 Jul; 30(7):1546-55. PubMed ID: 12906172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correcting for electron contamination at dose maximum in photon beams.
    Rogers DW
    Med Phys; 1999 Apr; 26(4):533-7. PubMed ID: 10227355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between %dd(10)x and stopping-power ratios for flattening filter free accelerators: a Monte Carlo study.
    Xiong G; Rogers DW
    Med Phys; 2008 May; 35(5):2104-9. PubMed ID: 18561686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of stopping-power ratios using realistic clinical electron beams.
    Ding GX; Rogers DW; Mackie TR
    Med Phys; 1995 May; 22(5):489-501. PubMed ID: 7643785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron contamination in 8 and 18 MV photon beams.
    Zhu TC; Palta JR
    Med Phys; 1998 Jan; 25(1):12-9. PubMed ID: 9472821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo study of in-field and out-of-field dose distributions from a linear accelerator operating with and without a flattening-filter.
    Almberg SS; Frengen J; Lindmo T
    Med Phys; 2012 Aug; 39(8):5194-203. PubMed ID: 22894444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorbed-dose beam quality conversion factors for cylindrical chambers in high energy photon beams.
    Seuntjens JP; Ross CK; Shortt KR; Rogers DW
    Med Phys; 2000 Dec; 27(12):2763-79. PubMed ID: 11190960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beam characteristics and stopping-power ratios of small radiosurgery photon beams.
    Ding GX; Ding F
    Phys Med Biol; 2012 Sep; 57(17):5509-21. PubMed ID: 22872136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technical Note: On maximizing Cherenkov emissions from medical linear accelerators.
    Shrock Z; Yoon SW; Gunasingha R; Oldham M; Adamson J
    Med Phys; 2018 Jul; 45(7):3315-3320. PubMed ID: 29672860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of using a dose-area product ratio as beam quality specifier for photon beams with small field sizes.
    Pimpinella M; Caporali C; Guerra AS; Silvi L; De Coste V; Petrucci A; Delaunay F; Dufreneix S; Gouriou J; Ostrowsky A; Rapp B; Bordy JM; Daures J; Le Roy M; Sommier L; Vermesse D
    Phys Med; 2018 Jan; 45():106-116. PubMed ID: 29472074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Monte Carlo study on neutron and electron contamination of an unflattened 18-MV photon beam.
    Mesbahi A
    Appl Radiat Isot; 2009 Jan; 67(1):55-60. PubMed ID: 18760613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct measurement of electron contamination in cobalt beams using a charge detector.
    Galbraith DM; Rawlinson JA
    Med Phys; 1985; 12(3):273-80. PubMed ID: 3925307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental validation of the dual parameter beam quality specifier for reference dosimetry in flattening-filter-free (FFF) photon beams.
    Simpson E; Gajewski R; Flower E; Stensmyr R
    Phys Med Biol; 2015 Jul; 60(14):N271-81. PubMed ID: 26111099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron contamination in clinical high energy photon beams.
    Sjögren R; Karlsson M
    Med Phys; 1996 Nov; 23(11):1873-81. PubMed ID: 8947901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo calculations for reference dosimetry of electron beams with the PTW Roos and NE2571 ion chambers.
    Muir BR; Rogers DW
    Med Phys; 2013 Dec; 40(12):121722. PubMed ID: 24320508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.