BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 7935366)

  • 1. Calcium/calmodulin-dependent protein kinase II: role in learning and memory.
    Soderling TR
    Mol Cell Biochem; 1993 Nov; 127-128():93-101. PubMed ID: 7935366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitatory interactions between glutamate receptors and protein kinases.
    Soderling TR; Tan SE; McGlade-McCulloh E; Yamamoto H; Fukunaga K
    J Neurobiol; 1994 Mar; 25(3):304-11. PubMed ID: 7910847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Molecular mechanism of learning and memory based on the research for Ca2+/calmodulin-dependent protein kinase II].
    Yamauchi T
    Yakugaku Zasshi; 2007 Aug; 127(8):1173-97. PubMed ID: 17666869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postsynaptic protein phosphorylation and LTP.
    Soderling TR; Derkach VA
    Trends Neurosci; 2000 Feb; 23(2):75-80. PubMed ID: 10652548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calmodulin-dependent protein kinase II. Multifunctional roles in neuronal differentiation and synaptic plasticity.
    Kelly PT
    Mol Neurobiol; 1991; 5(2-4):153-77. PubMed ID: 1668384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II.
    McGlade-McCulloh E; Yamamoto H; Tan SE; Brickey DA; Soderling TR
    Nature; 1993 Apr; 362(6421):640-2. PubMed ID: 8385275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic plasticity: a molecular memory switch.
    Lisman JE; McIntyre CC
    Curr Biol; 2001 Oct; 11(19):R788-91. PubMed ID: 11591339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus.
    Miyamoto E
    J Pharmacol Sci; 2006; 100(5):433-42. PubMed ID: 16799259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in non-N-methyl-D-aspartate glutamate receptors.
    Yakel JL; Vissavajjhala P; Derkach VA; Brickey DA; Soderling TR
    Proc Natl Acad Sci U S A; 1995 Feb; 92(5):1376-80. PubMed ID: 7877986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal Ca2+/calmodulin-dependent protein kinase II--discovery, progress in a quarter of a century, and perspective: implication for learning and memory.
    Yamauchi T
    Biol Pharm Bull; 2005 Aug; 28(8):1342-54. PubMed ID: 16079472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning-specific, time-dependent increases in hippocampal Ca2+/calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity.
    Cammarota M; Bernabeu R; Levi De Stein M; Izquierdo I; Medina JH
    Eur J Neurosci; 1998 Aug; 10(8):2669-76. PubMed ID: 9767396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II.
    Soderling TR
    Neurochem Int; 1996 Apr; 28(4):359-61. PubMed ID: 8740441
    [No Abstract]   [Full Text] [Related]  

  • 13. Postsynaptic signaling networks: cellular cogwheels underlying long-term plasticity.
    Blitzer RD; Iyengar R; Landau EM
    Biol Psychiatry; 2005 Jan; 57(2):113-9. PubMed ID: 15652868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The molecular basis of CaMKII function in synaptic and behavioural memory.
    Lisman J; Schulman H; Cline H
    Nat Rev Neurosci; 2002 Mar; 3(3):175-90. PubMed ID: 11994750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+/calmodulin-dependent protein kinase II phosphorylation of the presynaptic protein synapsin I is persistently increased during long-term potentiation.
    Nayak AS; Moore CI; Browning MD
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15451-6. PubMed ID: 8986832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A working model of CaM kinase II activity in hippocampal long-term potentiation and memory.
    Fukunaga K; Miyamoto E
    Neurosci Res; 2000 Sep; 38(1):3-17. PubMed ID: 10997573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The CaM kinase II hypothesis for the storage of synaptic memory.
    Lisman J
    Trends Neurosci; 1994 Oct; 17(10):406-12. PubMed ID: 7530878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning-induced glutamate receptor phosphorylation resembles that induced by long term potentiation.
    Shukla K; Kim J; Blundell J; Powell CM
    J Biol Chem; 2007 Jun; 282(25):18100-18107. PubMed ID: 17472959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current studies on a working model of CaM kinase II in hippocampal long-term potentiation and memory.
    Fukunaga K; Miyamoto E
    Jpn J Pharmacol; 1999 Jan; 79(1):7-15. PubMed ID: 10082312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation.
    Barria A; Muller D; Derkach V; Griffith LC; Soderling TR
    Science; 1997 Jun; 276(5321):2042-5. PubMed ID: 9197267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.