BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 7935367)

  • 21. Characterization of a p53-related activation domain in Adr1p that is sufficient for ADR1-dependent gene expression.
    Young ET; Saario J; Kacherovsky N; Chao A; Sloan JS; Dombek KM
    J Biol Chem; 1998 Nov; 273(48):32080-7. PubMed ID: 9822683
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of expression of the amino acid transporter gene BAP3 in Saccharomyces cerevisiae.
    De Boer M; Bebelman JP; Gonçalves PM; Maat J; Van Heerikhuizen H; Planta RJ
    Mol Microbiol; 1998 Nov; 30(3):603-13. PubMed ID: 9822825
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae.
    Hedges D; Proft M; Entian KD
    Mol Cell Biol; 1995 Apr; 15(4):1915-22. PubMed ID: 7891685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A genetic method for defining DNA-binding domains: application to the nuclear receptor NGFI-B.
    Wilson TE; Padgett KA; Johnston M; Milbrandt J
    Proc Natl Acad Sci U S A; 1993 Oct; 90(19):9186-90. PubMed ID: 8415675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae.
    Thomas D; Jacquemin I; Surdin-Kerjan Y
    Mol Cell Biol; 1992 Apr; 12(4):1719-27. PubMed ID: 1549123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cha4p of Saccharomyces cerevisiae activates transcription via serine/threonine response elements.
    Holmberg S; Schjerling P
    Genetics; 1996 Oct; 144(2):467-78. PubMed ID: 8889513
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Yeast SNF2/SWI2, SNF5, and SNF6 proteins function coordinately with the gene-specific transcriptional activators GAL4 and Bicoid.
    Laurent BC; Carlson M
    Genes Dev; 1992 Sep; 6(9):1707-15. PubMed ID: 1516829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. What is characteristic of fungal lysine synthesis through the alpha-aminoadipate pathway?
    Nishida H; Nishiyama M
    J Mol Evol; 2000 Sep; 51(3):299-302. PubMed ID: 11029074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MIG1-dependent and MIG1-independent glucose regulation of MAL gene expression in Saccharomyces cerevisiae.
    Hu Z; Nehlin JO; Ronne H; Michels CA
    Curr Genet; 1995 Aug; 28(3):258-66. PubMed ID: 8529272
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of a gene encoding a homocitrate synthase isoenzyme of Saccharomyces cerevisiae.
    Ramos F; Verhasselt P; Feller A; Peeters P; Wach A; Dubois E; Volckaert G
    Yeast; 1996 Oct; 12(13):1315-20. PubMed ID: 8923736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparing regions of the Epstein-Barr virus ZEBRA protein which function as transcriptional activating sequences in Saccharomyces cerevisiae and in B cells.
    Miller G; Himmelfarb H; Heston L; Countryman J; Gradoville L; Baumann R; Chi T; Carey M
    J Virol; 1993 Dec; 67(12):7472-81. PubMed ID: 8230468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The N-terminal 96 residues of MCM1, a regulator of cell type-specific genes in Saccharomyces cerevisiae, are sufficient for DNA binding, transcription activation, and interaction with alpha 1.
    Bruhn L; Hwang-Shum JJ; Sprague GF
    Mol Cell Biol; 1992 Aug; 12(8):3563-72. PubMed ID: 1630461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional interdependence of the yeast SNF2, SNF5, and SNF6 proteins in transcriptional activation.
    Laurent BC; Treitel MA; Carlson M
    Proc Natl Acad Sci U S A; 1991 Apr; 88(7):2687-91. PubMed ID: 1901413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of seven hydrophobic clusters in GCN4 making redundant contributions to transcriptional activation.
    Jackson BM; Drysdale CM; Natarajan K; Hinnebusch AG
    Mol Cell Biol; 1996 Oct; 16(10):5557-71. PubMed ID: 8816468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein.
    Wang H; Stillman DJ
    Mol Cell Biol; 1993 Mar; 13(3):1805-14. PubMed ID: 8441414
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activity of a C. elegans GATA transcription factor, ELT-1, expressed in yeast.
    Shim YH; Bonner JJ; Blumenthal T
    J Mol Biol; 1995 Nov; 253(5):665-76. PubMed ID: 7473742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of GCR2 in transcriptional activation of yeast glycolytic genes.
    Uemura H; Jigami Y
    Mol Cell Biol; 1992 Sep; 12(9):3834-42. PubMed ID: 1508187
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The general amino acid control regulates MET4, which encodes a methionine-pathway-specific transcriptional activator of Saccharomyces cerevisiae.
    Mountain HA; Byström AS; Korch C
    Mol Microbiol; 1993 Jan; 7(2):215-28. PubMed ID: 8446029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of constitutive and noninducible mutations of the PUT3 transcriptional activator.
    Marczak JE; Brandriss MC
    Mol Cell Biol; 1991 May; 11(5):2609-19. PubMed ID: 2017167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The type 1 human immunodeficiency virus Tat binding protein is a transcriptional activator belonging to an additional family of evolutionarily conserved genes.
    Ohana B; Moore PA; Ruben SM; Southgate CD; Green MR; Rosen CA
    Proc Natl Acad Sci U S A; 1993 Jan; 90(1):138-42. PubMed ID: 8419915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.