These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 7935446)

  • 21. ARC-1, a sequence element complementary to an internal 18S rRNA segment, enhances translation efficiency in plants when present in the leader or intercistronic region of mRNAs.
    Akbergenov RZh; Zhanybekova SSh; Kryldakov RV; Zhigailov A; Polimbetova NS; Hohn T; Iskakov BK
    Nucleic Acids Res; 2004; 32(1):239-47. PubMed ID: 14718549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient translation of an SSA1-derived heat-shock mRNA in yeast cells limited for cap-binding protein and eIF-4F.
    Barnes CA; MacKenzie MM; Johnston GC; Singer RA
    Mol Gen Genet; 1995 Mar; 246(5):619-27. PubMed ID: 7700235
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Internal initiation in Saccharomyces cerevisiae mediated by an initiator tRNA/eIF2-independent internal ribosome entry site element.
    Thompson SR; Gulyas KD; Sarnow P
    Proc Natl Acad Sci U S A; 2001 Nov; 98(23):12972-7. PubMed ID: 11687653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Starved Saccharomyces cerevisiae cells have the capacity to support internal initiation of translation.
    Paz I; Abramovitz L; Choder M
    J Biol Chem; 1999 Jul; 274(31):21741-5. PubMed ID: 10419487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency.
    Gallie DR
    Genes Dev; 1991 Nov; 5(11):2108-16. PubMed ID: 1682219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A translation enhancer element from black beetle virus engages yeast eIF4G1 to drive cap-independent translation initiation.
    Trainor BM; Ghosh A; Pestov DG; Hellen CUT; Shcherbik N
    Sci Rep; 2021 Jan; 11(1):2461. PubMed ID: 33510277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation.
    Svitkin YV; Herdy B; Costa-Mattioli M; Gingras AC; Raught B; Sonenberg N
    Mol Cell Biol; 2005 Dec; 25(23):10556-65. PubMed ID: 16287867
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of 5'-leader length, secondary structure and PABP concentration on cap and poly(A) tail function during translation in Xenopus oocytes.
    Gallie DR; Ling J; Niepel M; Morley SJ; Pain VM
    Nucleic Acids Res; 2000 Aug; 28(15):2943-53. PubMed ID: 10908358
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GCD11, a negative regulator of GCN4 expression, encodes the gamma subunit of eIF-2 in Saccharomyces cerevisiae.
    Hannig EM; Cigan AM; Freeman BA; Kinzy TG
    Mol Cell Biol; 1993 Jan; 13(1):506-20. PubMed ID: 8417348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Initiation-mediated mRNA decay in yeast affects heat-shock mRNAs, and works through decapping and 5'-to-3' hydrolysis.
    Heikkinen HL; Llewellyn SA; Barnes CA
    Nucleic Acids Res; 2003 Jul; 31(14):4006-16. PubMed ID: 12853617
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A common function for mRNA 5' and 3' ends in translation initiation in yeast.
    Tarun SZ; Sachs AB
    Genes Dev; 1995 Dec; 9(23):2997-3007. PubMed ID: 7498795
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Saccharomyces cerevisiae homologue of mammalian translation initiation factor 6 does not function as a translation initiation factor.
    Si K; Maitra U
    Mol Cell Biol; 1999 Feb; 19(2):1416-26. PubMed ID: 9891075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The yeast nuclear cap binding complex can interact with translation factor eIF4G and mediate translation initiation.
    Fortes P; Inada T; Preiss T; Hentze MW; Mattaj IW; Sachs AB
    Mol Cell; 2000 Jul; 6(1):191-6. PubMed ID: 10949040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae.
    Tucker M; Parker R
    Annu Rev Biochem; 2000; 69():571-95. PubMed ID: 10966469
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alternative transcription start site selection leads to large differences in translation activity in yeast.
    Rojas-Duran MF; Gilbert WV
    RNA; 2012 Dec; 18(12):2299-305. PubMed ID: 23105001
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The yeast poly(A)-binding protein Pab1p stimulates in vitro poly(A)-dependent and cap-dependent translation by distinct mechanisms.
    Otero LJ; Ashe MP; Sachs AB
    EMBO J; 1999 Jun; 18(11):3153-63. PubMed ID: 10357826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Translation factors promote the formation of two states of the closed-loop mRNP.
    Amrani N; Ghosh S; Mangus DA; Jacobson A
    Nature; 2008 Jun; 453(7199):1276-80. PubMed ID: 18496529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of NAD+ capped mRNAs in Saccharomyces cerevisiae.
    Walters RW; Matheny T; Mizoue LS; Rao BS; Muhlrad D; Parker R
    Proc Natl Acad Sci U S A; 2017 Jan; 114(3):480-485. PubMed ID: 28031484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5' noncoding region.
    Pelletier J; Kaplan G; Racaniello VR; Sonenberg N
    Mol Cell Biol; 1988 Mar; 8(3):1103-12. PubMed ID: 2835660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intrinsically Unstructured Sequences in the mRNA 3' UTR Reduce the Ability of Poly(A) Tail to Enhance Translation.
    Lai WC; Zhu M; Belinite M; Ballard G; Mathews DH; Ermolenko DN
    J Mol Biol; 2022 Dec; 434(24):167877. PubMed ID: 36368412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.