BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7935552)

  • 1. The biphasic morphology of voluntary and spontaneous single muscle fiber action potentials.
    Dumitru D; King JC; van der Rijt W; Stegeman DF
    Muscle Nerve; 1994 Nov; 17(11):1301-7. PubMed ID: 7935552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volume conduction in an anatomically based surface EMG model.
    Lowery MM; Stoykov NS; Dewald JP; Kuiken TA
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2138-47. PubMed ID: 15605861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling fibrillation potentials--a new analytical description for the muscle intracellular action potential.
    Rodríguez Falces J; Malanda Trigueros A; Gila Useros L; Rodríguez Carreño I; Navallas Irujo J
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):581-92. PubMed ID: 16602564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of changes in intracellular action potential on potentials recorded by single-fiber, macro, and belly-tendon electrodes.
    Arabadzhiev TI; Dimitrov GV; Chakarov VE; Dimitrov AG; Dimitrova NA
    Muscle Nerve; 2008 Jun; 37(6):700-12. PubMed ID: 18506714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel ideas for fast muscle action potential simulations using the line source model.
    Hammarberg B; Stålberg E
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1888-97. PubMed ID: 15543667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagated insertional activity: a model of positive sharp wave generation.
    Dumitru D; Martinez CT
    Muscle Nerve; 2006 Oct; 34(4):457-62. PubMed ID: 16878321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling fibrillation potentials--analysis of time parameters in the muscle intracellular action potential.
    Rodríguez Falces J; Trigueros AM; Useros LG; Carreño IR; Irujo JN
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1361-70. PubMed ID: 17694856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between the rise-time of single-fibre action potentials and radial distance in human muscle fibres.
    Rodríguez J; Navallas J; Gila L; Rodríguez I; Malanda A
    Clin Neurophysiol; 2010 Feb; 121(2):214-20. PubMed ID: 19955017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of anatomical, physical, and detection-system parameters on surface EMG.
    Farina D; Cescon C; Merletti R
    Biol Cybern; 2002 Jun; 86(6):445-56. PubMed ID: 12111273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of surface electrode size on computer simulated surface motor unit potentials.
    Ferdjallah M; Wertsch JJ; Harris GF
    Electromyogr Clin Neurophysiol; 1999; 39(5):259-65. PubMed ID: 10421996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A surface EMG generation model with multilayer cylindrical description of the volume conductor.
    Farina D; Mesin L; Martina S; Merletti R
    IEEE Trans Biomed Eng; 2004 Mar; 51(3):415-26. PubMed ID: 15000373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of innervation-zone distribution on estimates of average muscle-fiber conduction velocity.
    Nielsen M; Graven-Nielsen T; Farina D
    Muscle Nerve; 2008 Jan; 37(1):68-78. PubMed ID: 17912748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular contribution to extracellularly recorded waveforms: the 'membrane rent' hypothesis.
    Dumitru D; King JC; Rogers WE; Stegeman DF
    Clin Neurophysiol; 1999 Jan; 110(1):166-75. PubMed ID: 10348336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Close-proximity concentric and modified single fiber electromyographic recordings using revised techniques with a paired wire electrode.
    Harmon RL; Rodriquez AA
    Electromyogr Clin Neurophysiol; 1994; 34(5):275-8. PubMed ID: 7956876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of average muscle fiber conduction velocity from simulated surface EMG in pinnate muscles.
    Mesin L; Damiano L; Farina D
    J Neurosci Methods; 2007 Mar; 160(2):327-34. PubMed ID: 17070925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive sharp wave origin: evidence supporting the electrode initiation hypothesis.
    Dumitru D; Santa Maria DL
    Muscle Nerve; 2007 Sep; 36(3):349-56. PubMed ID: 17487870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A finite element model for describing the effect of muscle shortening on surface EMG.
    Mesin L; Joubert M; Hanekom T; Merletti R; Farina D
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):593-600. PubMed ID: 16602565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive detection of fibrillation potentials in skeletal muscle.
    Keller SP; Sandrock AW; Gozani SN
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):788-95. PubMed ID: 12148817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new method using F-waves to measure muscle fiber conduction velocity (MFCV).
    Metani H; Tsubahara A; Hiraoka T; Aoyagi Y; Tanaka Y
    Electromyogr Clin Neurophysiol; 2005 Jun; 45(4):245-53. PubMed ID: 16083149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison between disposable and reusable single fiber needle electrodes in relation to stimulated single fiber studies.
    Papathanasiou ES; Zamba-Papanicolaou E
    Clin Neurophysiol; 2012 Jul; 123(7):1437-9. PubMed ID: 22119663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.