These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 7935630)
21. Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor. Klimstra WB; Ryman KD; Johnston RE J Virol; 1998 Sep; 72(9):7357-66. PubMed ID: 9696832 [TBL] [Abstract][Full Text] [Related]
22. Involvement of heparan sulfate proteoglycans in the binding step for phagocytosis of latex beads by Chinese hamster ovary cells. Fukasawa M; Sekine F; Miura M; Nishijima M; Hanada K Exp Cell Res; 1997 Jan; 230(1):154-62. PubMed ID: 9013717 [TBL] [Abstract][Full Text] [Related]
24. Removal of sialic acid from mucin-like surface molecules of Trypanosoma cruzi metacyclic trypomastigotes enhances parasite-host cell interaction. Yoshida N; Dorta ML; Ferreira AT; Oshiro ME; Mortara RA; Acosta-Serrano A; Favoreto Júnior S Mol Biochem Parasitol; 1997 Jan; 84(1):57-67. PubMed ID: 9041521 [TBL] [Abstract][Full Text] [Related]
25. Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Alvarez-Domínguez C; Vázquez-Boland JA; Carrasco-Marín E; López-Mato P; Leyva-Cobián F Infect Immun; 1997 Jan; 65(1):78-88. PubMed ID: 8975895 [TBL] [Abstract][Full Text] [Related]
26. Generation of constitutive and inducible trans-sialylation dominant-negative phenotypes in Trypanosoma brucei and Trypanosoma cruzi. Engstler M; Wirtz E; Cross GA Glycobiology; 1997 Oct; 7(7):955-64. PubMed ID: 9363438 [TBL] [Abstract][Full Text] [Related]
27. A neuraminidase from Trypanosoma cruzi removes sialic acid from the surface of mammalian myocardial and endothelial cells. Libby P; Alroy J; Pereira ME J Clin Invest; 1986 Jan; 77(1):127-35. PubMed ID: 3080470 [TBL] [Abstract][Full Text] [Related]
28. Expression of trypomastigote trans-sialidase in metacyclic forms of Trypanosoma cruzi increases parasite escape from its parasitophorous vacuole. Rubin-de-Celis SS; Uemura H; Yoshida N; Schenkman S Cell Microbiol; 2006 Dec; 8(12):1888-98. PubMed ID: 16824037 [TBL] [Abstract][Full Text] [Related]
29. Heparin-like molecules on the cell surface potentiate binding of diphtheria toxin to the diphtheria toxin receptor/membrane-anchored heparin-binding epidermal growth factor-like growth factor. Shishido Y; Sharma KD; Higashiyama S; Klagsbrun M; Mekada E J Biol Chem; 1995 Dec; 270(49):29578-85. PubMed ID: 7494001 [TBL] [Abstract][Full Text] [Related]
30. Interaction of Chlamydia trachomatis with mammalian cells is independent of host cell surface heparan sulfate glycosaminoglycans. Stephens RS; Poteralski JM; Olinger L Infect Immun; 2006 Mar; 74(3):1795-9. PubMed ID: 16495553 [TBL] [Abstract][Full Text] [Related]
31. Endothelial heparan sulfate proteoglycan. I. Inhibitory effects on smooth muscle cell proliferation. Benitz WE; Kelley RT; Anderson CM; Lorant DE; Bernfield M Am J Respir Cell Mol Biol; 1990 Jan; 2(1):13-24. PubMed ID: 2137707 [TBL] [Abstract][Full Text] [Related]
32. Heparin inhibition of insulin-like growth factor-binding protein-3 binding to human fibroblasts and rat glioma cells: role of heparan sulfate proteoglycans. Yang YW; Yanagishita M; Rechler MM Endocrinology; 1996 Oct; 137(10):4363-71. PubMed ID: 8828497 [TBL] [Abstract][Full Text] [Related]
33. Cell surface heparan sulfate mediates some adhesive responses to glycosaminoglycan-binding matrices, including fibronectin. Laterra J; Silbert JE; Culp LA J Cell Biol; 1983 Jan; 96(1):112-23. PubMed ID: 6219115 [TBL] [Abstract][Full Text] [Related]
34. Lactose derivatives are inhibitors of Trypanosoma cruzi trans-sialidase activity toward conventional substrates in vitro and in vivo. Agustí R; París G; Ratier L; Frasch AC; de Lederkremer RM Glycobiology; 2004 Jul; 14(7):659-70. PubMed ID: 15070857 [TBL] [Abstract][Full Text] [Related]
35. Human herpesvirus 8 envelope glycoprotein K8.1A interaction with the target cells involves heparan sulfate. Wang FZ; Akula SM; Pramod NP; Zeng L; Chandran B J Virol; 2001 Aug; 75(16):7517-27. PubMed ID: 11462024 [TBL] [Abstract][Full Text] [Related]
36. Differential binding of platelet-derived growth factor isoforms to glycosaminoglycans. García-Olivas R; Hoebeke J; Castel S; Reina M; Fager G; Lustig F; Vilaró S Histochem Cell Biol; 2003 Nov; 120(5):371-82. PubMed ID: 14557886 [TBL] [Abstract][Full Text] [Related]
37. Thrombin adhesive properties: induction by plasmin and heparan sulfate. Bar-Shavit R; Eskohjido Y; Fenton JW; Esko JD; Vlodavsky I J Cell Biol; 1993 Dec; 123(5):1279-87. PubMed ID: 8245131 [TBL] [Abstract][Full Text] [Related]
38. Cell adhesion to a motif shared by the malaria circumsporozoite protein and thrombospondin is mediated by its glycosaminoglycan-binding region and not by CSVTCG. Gantt SM; Clavijo P; Bai X; Esko JD; Sinnis P J Biol Chem; 1997 Aug; 272(31):19205-13. PubMed ID: 9235912 [TBL] [Abstract][Full Text] [Related]
39. A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Schenkman S; Jiang MS; Hart GW; Nussenzweig V Cell; 1991 Jun; 65(7):1117-25. PubMed ID: 1712251 [TBL] [Abstract][Full Text] [Related]
40. The mechanisms of Trypanosoma cruzi invasion of mammalian cells. Burleigh BA; Andrews NW Annu Rev Microbiol; 1995; 49():175-200. PubMed ID: 8561458 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]